Synthesis and Electrochemical Properties of Two-Dimensional Hafnium Carbide.

We demonstrate fabrication of a two-dimensional Hf-containing MXene, Hf3C2Tz, by selective etching of a layered parent Hf3[Al(Si)]4C6 compound. A substitutional solution of Si on Al sites effectively weakened the interfacial adhesion between Hf-C and Al(Si)-C sublayers within the unit cell of the parent compound, facilitating the subsequent selective etching. The underlying mechanism of the Si-alloying-facilitated etching process is thoroughly studied by first-principles density functional calculations. The result showed that more valence electrons of Si than Al weaken the adhesive energy of the etching interface. The MXenes were determined to be flexible and conductive. Moreover, this 2D Hf-containing MXene material showed reversible volumetric capacities of 1567 and 504 mAh cm-3 for lithium and sodium ions batteries, respectively, at a current density of 200 mAg-1 after 200 cycles. Thus, Hf3C2Tz MXenes with a 2D structure are candidate anode materials for metal-ion intercalation, especially for applications where size matters.

[1]  Yury Gogotsi,et al.  Two-dimensional transition metal carbides. , 2012, ACS nano.

[2]  Li-zhen Fan,et al.  Two-dimensional Ti3C2 as anode material for Li-ion batteries , 2014 .

[3]  Jonathan N. Coleman,et al.  Two‐Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. , 2011 .

[4]  Yanchun Zhou,et al.  Mechanical and thermal properties of a Hf2[Al(Si)]4C5 ceramic prepared by in situ reaction/hot-pressing , 2010 .

[5]  Jing Chen,et al.  CO2 and temperature dual responsive "Smart" MXene phases. , 2015, Chemical communications.

[6]  Yury Gogotsi,et al.  Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance , 2014, Nature.

[7]  B. Hong,et al.  Materials for Flexible, Stretchable Electronics: Graphene and 2D Materials , 2015 .

[8]  E. Johnston-Halperin,et al.  Progress, challenges, and opportunities in two-dimensional materials beyond graphene. , 2013, ACS nano.

[9]  Yury Gogotsi,et al.  Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. , 2014, Journal of the American Chemical Society.

[10]  Majid Beidaghi,et al.  Two-Dimensional, Ordered, Double Transition Metals Carbides (MXenes). , 2015, ACS nano.

[11]  Y. Gogotsi,et al.  True Performance Metrics in Electrochemical Energy Storage , 2011, Science.

[12]  Chang E. Ren,et al.  Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices , 2016 .

[13]  X. Tao,et al.  Sn⁴⁺ Ion Decorated Highly Conductive Ti3C2 MXene: Promising Lithium-Ion Anodes with Enhanced Volumetric Capacity and Cyclic Performance. , 2016, ACS nano.

[14]  J. Vleugels,et al.  Synthesis of MAX Phases in the Hf-Al-C System. , 2016, Inorganic chemistry.

[15]  Y. Gogotsi,et al.  Synthesis of Two‐Dimensional Materials for Capacitive Energy Storage , 2016, Advanced materials.

[16]  Yury Gogotsi,et al.  Intercalation and delamination of layered carbides and carbonitrides , 2013, Nature Communications.

[17]  Michel W. Barsoum,et al.  The MN+1AXN phases: A new class of solids , 2000 .

[18]  Renzhi Ma,et al.  Nanosheets of Oxides and Hydroxides: Ultimate 2D Charge‐Bearing Functional Crystallites , 2010, Advances in Materials.

[19]  Y. Gogotsi,et al.  Two‐Dimensional Nb‐Based M4C3 Solid Solutions (MXenes) , 2016 .

[20]  Pooi See Lee,et al.  Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: synthesis and applications , 2017 .

[21]  Yoshiyuki Kawazoe,et al.  Novel Electronic and Magnetic Properties of Two‐Dimensional Transition Metal Carbides and Nitrides , 2013 .

[22]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[23]  Kan Luo,et al.  Promising electron mobility and high thermal conductivity in Sc2CT2 (T = F, OH) MXenes. , 2016, Nanoscale.

[24]  Yury Gogotsi,et al.  New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. , 2013, Journal of the American Chemical Society.

[25]  J. Vleugels,et al.  Synthesis of the novel Zr3AlC2 MAX phase , 2016 .

[26]  Michel W. Barsoum,et al.  Synthesis of two-dimensional molybdenum carbide, Mo2C, from the gallium based atomic laminate Mo2Ga2C , 2015 .

[27]  Pierre-Louis Taberna,et al.  MXene: a promising transition metal carbide anode for lithium-ion batteries , 2012 .

[28]  A. Vojvodić,et al.  Two-Dimensional Molybdenum Carbide (MXene) as an Efficient Electrocatalyst for Hydrogen Evolution , 2016 .

[29]  S. Du,et al.  A Two-Dimensional Zirconium Carbide by Selective Etching of Al3C3 from Nanolaminated Zr3Al3C5. , 2016, Angewandte Chemie.

[30]  Jacek Zio´ŀkowski New relation between ionic radii, bond length, and bond strength , 1985 .

[31]  Yury Gogotsi,et al.  Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). , 2016, Nanoscale.

[32]  M. Naguib,et al.  Large-scale delamination of multi-layers transition metal carbides and carbonitrides "MXenes". , 2015, Dalton transactions.

[33]  S. Du,et al.  Controllable magnitude and anisotropy of the electrical conductivity of Hf3C2O2 MXene , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[34]  Kevin M. Cook,et al.  X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes) , 2016 .

[35]  J. Qian,et al.  Enhanced Performance of a Lithium-Sulfur Battery Using a Carbonate-Based Electrolyte. , 2016, Angewandte Chemie.

[36]  R. Ruoff,et al.  Graphene and Graphene Oxide: Synthesis, Properties, and Applications , 2010, Advanced materials.

[37]  Jian He,et al.  The thermal and electrical properties of the promising semiconductor MXene Hf2CO2 , 2015, Scientific Reports.

[38]  Jun Lu,et al.  Theoretical stability and materials synthesis of a chemically ordered MAX phase, Mo2ScAlC2, and its two-dimensional derivate Mo2ScC2 MXene , 2017 .

[39]  Qinghua Wu,et al.  Structural Transformation of MXene (V2C, Cr2C, and Ta2C) with O Groups during Lithiation: A First-Principles Investigation. , 2016, ACS applied materials & interfaces.

[40]  Yury Gogotsi,et al.  Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide , 2013, Science.

[41]  J. Vleugels,et al.  Synthesis of the new MAX phase Zr2AlC , 2016 .

[42]  Jian He,et al.  Role of the surface effect on the structural, electronic and mechanical properties of the carbide MXenes , 2015 .

[43]  Yury Gogotsi,et al.  Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. , 2011 .

[44]  François-Xavier Coudert,et al.  Anisotropic elastic properties of flexible metal-organic frameworks: how soft are soft porous crystals? , 2012, Physical review letters.

[45]  Deep Jariwala,et al.  Atomic layers of hybridized boron nitride and graphene domains. , 2010, Nature materials.

[46]  Qing Tang,et al.  Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. , 2012, Journal of the American Chemical Society.

[47]  Ning Kang,et al.  Large-area high-quality 2D ultrathin Mo2C superconducting crystals. , 2015, Nature materials.

[48]  Y. Gogotsi,et al.  Synthesis of two-dimensional materials by selective extraction. , 2015, Accounts of chemical research.

[49]  V. Presser,et al.  Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2 , 2011, Advanced materials.

[50]  Atsuo Yamada,et al.  Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors , 2015, Nature Communications.

[51]  Liquan Chen,et al.  Atomic-scale recognition of surface structure and intercalation mechanism of Ti3C2X. , 2015, Journal of the American Chemical Society.

[52]  Jagjit Nanda,et al.  Synthesis and Characterization of 2D Molybdenum Carbide (MXene) , 2016 .

[53]  Yury Gogotsi,et al.  Pseudocapacitive Electrodes Produced by Oxidant‐Free Polymerization of Pyrrole between the Layers of 2D Titanium Carbide (MXene) , 2016, Advanced materials.

[54]  Y. Gogotsi,et al.  Two‐Dimensional Materials: 25th Anniversary Article: MXenes: A New Family of Two‐Dimensional Materials (Adv. Mater. 7/2014) , 2014 .

[55]  S J L Billinge,et al.  Synthesis and characterization of two-dimensional Nb4C3 (MXene). , 2014, Chemical communications.

[56]  J. Xue,et al.  Pulse Electric Current–Aided Reactive Sintering of High‐Purity Zr3Al3C5 , 2014 .

[57]  Stefan DeGendt Graphene and 2D Materials in Electronics , 2017 .

[58]  B. Pan,et al.  Ultrathin nanosheets of MAX phases with enhanced thermal and mechanical properties in polymeric compositions: Ti3Si(0.75)Al(0.25)C2. , 2013, Angewandte Chemie.

[59]  Yanchun Zhou,et al.  Synthesis and structure-property relationships of a new family of layered carbides in Zr-Al(Si)-C and Hf-Al(Si)-C systems , 2013 .

[60]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[61]  Chang E. Ren,et al.  2D titanium carbide and transition metal oxides hybrid electrodes for Li-ion storage , 2016 .