Switching converters with wide DC conversion range

Compared to basic converter topologies (buck, boost, buck-boost, Cuk, etc.), pulse-width modulation (PWM) converters with quadratic DC conversion ratios, M(D)=D/sup 2/, M(D)=D/sup 2//(1-D) or M(D)=D/sup 2//(1-D)/sup 2/, offer a significantly wider conversion range. For a given minimum ON-time and, consequently, for a given minimum duty ratio D/sub min/, D/sup 2/ in the numerator of M(D) yields a much lower limit on the minimum attainable conversion ratio. By applying a systematic synthesis procedure, six novel single-transistor converter configurations with quadratic DC conversion ratios are found. The simpler, single-transistor realization is the most important advantage over the straightforward cascade of two basic converters. As far as conversion efficiency is concerned, it is clear that a single-stage converter is usually a better choice than a two-stage converter. The quadratic converters proposed are intended for applications where conventional single-stage converters are inadequate-for high-frequency applications where the specified range of input voltages and the specified range of output voltages call for an extremely large range of conversion ratios. >

[1]  Slobodan Cuk,et al.  A general unified approach to modelling switching DC-tO-DC converters in discontinuous conduction mode , 1977, 1977 IEEE Power Electronics Specialists Conference.

[2]  S. Cuk,et al.  General properties and synthesis of PWM DC-to-DC converters , 1989, 20th Annual IEEE Power Electronics Specialists Conference.

[3]  R. D. Middlebrook,et al.  Transformerless DC-to-DC Converters with Large Conversion Ratios , 1984, INTELEC '84 - International Telecommunications Energy Conference.

[4]  Koosuke Harada,et al.  The Cascade Connection of Switching Regulators , 1976, IEEE Transactions on Industry Applications.

[5]  Slobodan Cuk,et al.  Discontinuous inductor current in the optimum topology switching converter , 1978, 1978 IEEE Power Electronics Specialists Conference.