Intelligent Utilisation of Digital Databases for Assembly Time Determination in Early Phases of Product Emergence

Abstract Manufacturing industry has been progressively using digital tools for product development and manufacturing control to handle product and process complexity as well as to react to ever-increasing cost and time pressure. This paper presents aims and potentials of the application of knowledge discovery processes in industrial databases for the identification and extraction of new knowledge in order to support planning and decision making processes in product emergence. Therefore, it describes basic approaches for the intelligent utilisation of discovered knowledge on the example of prospective assembly time determination in early phases of product emergence

[1]  H.-J. Bullinger,et al.  Technology guide : principles, applications, trends , 2009 .

[2]  Kate Smith-Miles,et al.  An analysis of customer retention and insurance claim patterns using data mining: a case study , 2000, J. Oper. Res. Soc..

[3]  Martin Eigner,et al.  Product Lifecycle Management: Ein Leitfaden für Product Development und Life Cycle Management , 2006 .

[4]  H. J. Franke Holistic Methods in Product Development , 2007 .

[5]  Padhraic Smyth,et al.  From Data Mining to Knowledge Discovery in Databases , 1996, AI Mag..

[6]  Bruno Lotter,et al.  Montage in der industriellen Produktion , 2006 .

[7]  Michael Rosemann,et al.  What is ERP? , 2000, Inf. Syst. Frontiers.

[8]  Martin Eigner,et al.  Integrated visualisation for supporting decision-making in engineering processes, based on JT , 2011 .

[9]  Mu-Chen Chen,et al.  Credit scoring with a data mining approach based on support vector machines , 2007, Expert Syst. Appl..

[10]  Christoph Picker Prospektive Zeitbestimmung für nicht wertschöpfende Montagetätigkeiten , 2007 .

[11]  Jochen Deuse,et al.  Intelligente Nutzung von implizitem Planungswissen der Digitalen Fabrik , 2011 .

[12]  George Chryssolouris,et al.  Manufacturing Systems: Theory and Practice , 1992 .

[13]  Gad Rabinowitz,et al.  Cycle-Time Key Factor Identification and Prediction in Semiconductor Manufacturing Using Machine Learning and Data Mining , 2011, IEEE Transactions on Semiconductor Manufacturing.

[14]  László Monostori,et al.  Extracting process time information from large-scale noisy manufacturing event logs , 2011 .

[15]  August-Wilhelm Scheer CIM Computer Integrated Manufacturing: Towards the Factory of the Future , 1988 .

[16]  Gregory Piatetsky-Shapiro,et al.  Knowledge Discovery in Databases: An Overview , 1992, AI Mag..

[17]  Manoj Kumar Tiwari,et al.  Data mining in manufacturing: a review based on the kind of knowledge , 2009, J. Intell. Manuf..