Effect of position-dependent effective mass on optical properties of spherical nanostructures

[1]  A. Özmen,et al.  Linear and nonlinear optical absorption coefficients of two-electron spherical quantum dot with parabolic potential , 2015 .

[2]  S. Kiravittaya,et al.  Molecular beam epitaxial growth of GaSb/GaAs quantum dots on Ge substrates , 2014 .

[3]  M. Nazari,et al.  Linear and nonlinear optical properties of multilayered spherical quantum dots: Effects of geometrical size, hydrogenic impurity, hydrostatic pressure and temperature , 2014 .

[4]  Y. Naimi Refractive index changes of a donor impurity in spherical nanostructures: Effects of hydrostatic pressure and temperature , 2013 .

[5]  A. Zamani,et al.  Linear and nonlinear optical absorption coefficients and refractive index changes of a spherical quantum dot placed at the center of a cylindrical nano-wire: Effects of hydrostatic pressure and temperature , 2013 .

[6]  V. Gayathri,et al.  Hydrostatic pressure and temperature dependence of dielectric mismatch effect on the impurity binding energy in a spherical quantum dot , 2013 .

[7]  A. Özmen,et al.  Electronic structure and relativistic terms of one-electron spherical quantum dot , 2013 .

[8]  R. Khordad Optical properties of quantum wires: Rashba effect and external magnetic field , 2013 .

[9]  A. Jafari,et al.  Refractive index changes of multi-layered spherical nanostructures with donor impurity , 2013, 1301.6131.

[10]  A. Jafari,et al.  Linear and nonlinear optical properties of multi-layered spherical nano-systems with donor impurity in the center , 2013, 1301.2818.

[11]  G. Rezaei,et al.  Linear and nonlinear optical properties of a hydrogenic impurity confined in a two-dimensional quantum dot: Effects of hydrostatic pressure, external electric and magnetic fields , 2013 .

[12]  A. Jafari,et al.  Oscillator strengths of the intersubband electronic transitions in the multi-layered nano-antidots with hydrogenic impurity , 2012, 1301.2810.

[13]  A. Jafari,et al.  Hydrogenic impurity states in a spherical quantum antidot: Spin-orbit interaction, relativistic correction, and diamagnetic susceptibility , 2012 .

[14]  M. Moradi,et al.  Hydrostatic pressure and temperature effects on the electronic energy levels of a spherical quantum dot placed at the center of a nano-wire , 2012 .

[15]  A. Özmen,et al.  Refractive index changes and absorption coefficients in a spherical quantum dot with parabolic potential , 2012 .

[16]  W. Xie Electron Raman scattering of a two-dimensional pseudodot system , 2012 .

[17]  R. Khordad Hydrogenic donor impurity in a cubic quantum dot: effect of position-dependent effective mass , 2012 .

[18]  S. F. Taghizadeh,et al.  External electric field, hydrostatic pressure and temperature effects on the binding energy of an off-center hydrogenic impurity confined in a spherical Gaussian quantum dot , 2012 .

[19]  G. Rezaei,et al.  Magnetic field effects on the linear and nonlinear optical properties of coaxial cylindrical quantum well wires , 2012 .

[20]  M. Vahdani,et al.  Oscillator strengths of the intersubband electronic transitions in the hydrogenic nano-antidots , 2012 .

[21]  W. Xie,et al.  Optical properties of a donor impurity in a two-dimensional quantum pseudodot , 2011 .

[22]  S. Minez,et al.  The hydrostatic pressure and electric field effects on the normalized binding energy of hydrogenic impurity in a GaAs/AlAs spherical quantum dot , 2011 .

[23]  Xiaofen Li,et al.  Photoionization and binding energy of a donor impurity in a quantum dot under an electric field: Effects of the hydrostatic pressure and temperature , 2011 .

[24]  R. Khordad Diamagnetic susceptibility of hydrogenic donor impurity in a V-groove GaAs/Ga1-xAlxAs quantum wire , 2010 .

[25]  K. Guo,et al.  Nonlinear optical absorption coefficients and refractive index changes in a two-dimensional system , 2010 .

[26]  S. Elagoz,et al.  The effects of pressure and barrier height on donor binding energy in GaAs/Ga1−xAlxAs cylindrical quantum well wires , 2010 .

[27]  V. A. Holovatsky,et al.  Oscillator strengths of electron quantum transitions in spherical nano-systems with donor impurity in the center , 2009 .

[28]  E. Sadeghi Impurity binding energy of excited states in spherical quantum dot , 2009 .

[29]  E. Kasapoglu The hydrostatic pressure and temperature effects on donor impurities in GaAs/Ga1 − xAlxAs double quantum well under the external fields , 2008 .

[30]  A. Peter,et al.  Effects of position-dependent effective mass and dielectric function of a hydrogenic donor in a quantum dot , 2008 .

[31]  S. Rajashabala,et al.  Effects of dielectric screening and position dependent effective mass on donor binding energies and on diamagnetic susceptibility in a quantum well , 2008 .

[32]  R. Franco,et al.  Impurity states in a spherical GaAs-Ga1-x AlxAs quantum dots: Effects of hydrostatic pressure , 2008, Microelectron. J..

[33]  S. Rajashabala,et al.  Effective masses for donor binding energies in non-magnetic and magnetic quantum well systems: effect of magnetic field , 2007 .

[34]  I. Karabulut,et al.  Linear and nonlinear intersubband optical absorption coefficients and refractive index changes in a quantum box with finite confining potential , 2006 .

[35]  Luiz E. Oliveira,et al.  Effects of hydrostatic pressure and applied electric fields on the exciton states in GaAs–(Ga,Al)AsGaAs–(Ga,Al)As quantum wells , 2005 .

[36]  A. Peter The effect of hydrostatic pressure on binding energy of impurity states in spherical quantum dots , 2005 .

[37]  C. Duque,et al.  Effects of hydrostatic pressure on donor states in symmetrical GaAs–Ga0.7Al0.3As double quantum wells , 2005 .

[38]  P. Nithiananthi,et al.  EFFECT OF TEMPERATURE ON THE BINDING ENERGY OF LOW LYING EXCITED STATES IN A QUANTUM WELL , 2003 .

[39]  N. V. Lien,et al.  Electric field effects on the binding energy of hydrogen impurities in quantum dots with parabolic confinements , 2001 .

[40]  F. Peeters,et al.  Magnetic field dependence of the exciton energy in a quantum disk , 2000, cond-mat/0002405.

[41]  Yu-Xian Li,et al.  The effect of a spatially dependent effective mass on hydrogenic impurity binding energy in a finite parabolic quantum well with a magnetic field , 2000 .

[42]  J. Olsen,et al.  Full configuration interaction calculations of electron-hole correlation effects in strain-induced quantum dots , 2000 .

[43]  Katsuyuki Watanabe,et al.  Fabrication of GaAs Quantum Dots by Modified Droplet Epitaxy , 2000 .

[44]  Jianjun Liu,et al.  Effect of a spatially dependent effective mass on the hydrogenic impurity binding energy in a finite parabolic quantum well , 1998 .

[45]  Lévy-Leblond Position-dependent effective mass and Galilean invariance. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[46]  T. Fukui,et al.  Fabrication of GaAs/AlGaAs Quantum Dots by Metalorganic Vapor Phase Epitaxy on Patterned GaAs Substrates. , 1995 .

[47]  Yuen Exact analytic analysis of finite parabolic quantum wells with and without a static electric field. , 1993, Physical review. B, Condensed matter.