ECO2M: A TOUGH2 Fluid Property Module for Mixtures of Water, NaCl, and CO2, Including Super- and Sub-Critical Conditions, and Phase Change Between Liquid and Gaseous CO2

LBNL-4590E ECO2M: A TOUGH2 Fluid Property Module for Mixtures of Water, NaCl, and CO 2 , Including Super- and Sub-Critical Conditions, and Phase Change Between Liquid and Gaseous CO 2 Karsten Pruess Earth Sciences Division, Lawrence Berkeley National Laboratory University of California, Berkeley, CA 94720 April 2011 This work was supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 with the Lawrence Berkeley National Laboratory.

[1]  D. Himmelblau Partial Molar Heats and Entropies of Solution for Gases Dissolved in Water from the Freezing to Near the Critical Point , 1959 .

[2]  K. Pruess,et al.  TOUGH2 User's Guide Version 2 , 1999 .

[3]  K. Pruess,et al.  TMVOC, a numerical simulator for three-phase non-isothermal flows of multicomponent hydrocarbon mixtures in saturated-unsaturated heterogeneous media , 2005 .

[4]  N. B. Vargaftik Tables on the thermophysical properties of liquids and gases: In normal and dissociated states , 1975 .

[5]  Karsten Pruess,et al.  Multiphase flow dynamics during CO2 disposal into saline aquifers , 2002 .

[6]  Julio Enrique Garcia,et al.  Fluid Dynamics of Carbon Dioxide Disposal into Saline Aquifers , 2003 .

[7]  Jack C. Parker,et al.  A parametric model for constitutive properties governing multiphase flow in porous media , 1987 .

[8]  Karsten Pruess,et al.  ECO2N – A fluid property module for the TOUGH2 code for studies of CO2 storage in saline aquifers , 2007 .

[9]  Robert C. Reid,et al.  Tables on the Thermophysical Properties of Liquids and Gases. 2nd Edition, N. B. Vargaftik, Halsted Press, Division of John Wiley & Sons, Inc., New York, August, 1975. $49.50, 758 pages , 1975 .

[10]  K. Pruess,et al.  Thermohydrological conditions and silica redistribution near high‐level nuclear wastes emplaced in saturated geological formations , 1988 .

[11]  K. Pruess ECO2N: A TOUGH2 Fluid Property Module for Mixtures of Water, NaCl, and CO2 , 2005 .

[12]  V. V. Altunin,et al.  Thermophysical properties of carbon dioxide , 1968 .

[13]  Curtis M. Oldenburg,et al.  Joule-Thomson Cooling Due to CO2 Injection into Natural Gas Reservoirs , 2006 .

[14]  W. Wagner,et al.  A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple‐Point Temperature to 1100 K at Pressures up to 800 MPa , 1996 .

[15]  H. L. Stone Probability Model for Estimating Three-Phase Relative Permeability , 1970 .

[16]  Julio E. Garcia Density of aqueous solutions of CO2 , 2001 .

[17]  J. Haas Physical properties of the coexisting phases and thermochemical properties of the H 2 O component in boiling NaCl solutions , 1976 .

[18]  K. Pruess,et al.  The simulator TOUGH2/EWASG for modelling geothermal reservoirs with brines and non-condensible gas , 1997 .

[19]  P. Vinsome,et al.  A Simple Method For Predicting Cap And Base Rock Heat Losses In' Thermal Reservoir Simulators , 1980 .

[20]  Karsten Pruess,et al.  The TOUGH Codes—A Family of Simulation Tools for Multiphase Flow and Transport Processes in Permeable Media , 2003 .

[21]  Karsten Pruess,et al.  Numerical simulation of CO2 leakage from a geologic disposal reservoir including transitions from super- to sub-critical conditions, and boiling of liquid of CO2 , 2003 .

[22]  R. D. Evans,et al.  Atomic Nucleus , 2020, Definitions.

[23]  K. Pruess Numerical simulation experiments on the long-term evolution of a CO2 plume under a sloping caprock , 2009 .

[24]  E. Michaelides Thermodynamic properties of geothermal fluids , 1981 .

[25]  Jean-Philippe Nicot,et al.  Evaluation of large-scale CO2 storage on fresh-water sections of aquifers: An example from the Texas Gulf Coast Basin , 2008 .

[26]  Karsten Pruess,et al.  CO2-H2O Mixtures in the Geological Sequestration of CO2. II. Partitioning in Chloride Brines at 12-100oC and up to 600 bar , 2004 .

[27]  Karsten Pruess Numerical simulations show potential for strong nonisothermal effects during fluid leakage from a geologic disposal reservoir for CO2 , 2005 .

[28]  Karsten Pruess,et al.  Numerical studies of fluid leakage from a geologic disposal reservoir for CO2 show self‐limiting feedback between fluid flow and heat transfer , 2005 .

[29]  Jonny Rutqvist,et al.  Code intercomparison builds confidence in numerical simulation models for geologic disposal of CO2 , 2004 .

[30]  C. Oldenburg,et al.  Intercomparison of numerical simulation codes for geologic disposal of CO2 , 2002 .

[31]  I. Chou Phase relations in the system NaCl-KCl-H2O. III: Solubilities of halite in vapor-saturated liquids above 445°C and redetermination of phase equilibrium properties in the system NaCl-H2O to 1000°C and 1500 bars , 1987 .

[32]  M. A. Hessea,et al.  Gravity Currents with Residual Trapping , 2009 .

[33]  Karsten Pruess,et al.  On CO2 fluid flow and heat transfer behavior in the subsurface, following leakage from a geologic storage reservoir , 2008 .

[34]  S. L. Phillips,et al.  A Technical Databook for Geothermal Energy Utilization , 1981 .

[35]  K. Pruess Numerical Simulation of CO2 Leakage From a Geologic Disposal Reservoir, Including Transitions From Super- to Subcritical Conditions, and Boiling of Liquid CO2 , 2004 .