Perturbation analysis of dispersion properties in photonic crystal fibers through the finite element method

Perturbations to the ideal cross section of photonic crystal fibers (PCFs) are introduced in order to investigate their performance as a function of the structural fluctuations which may occur during fabrication. The effects of the cross-section geometry perturbations on dispersion characteristics like dispersion parameter and differential group delay are presented and discussed. The analysis has been performed through the finite element method which assures high flexibility and high solution accuracy.

[1]  T A Birks,et al.  Highly birefringent photonic crystal fibers. , 2000, Optics letters.

[2]  T. A. Birks,et al.  Recent progress in photonic crystal fibres , 2000, Optical Fiber Communication Conference. Technical Digest Postconference Edition. Trends in Optics and Photonics Vol.37 (IEEE Cat. No. 00CH37079).

[3]  S. Selleri,et al.  Holey fiber analysis through the finite-element method , 2002, IEEE Photonics Technology Letters.

[4]  D. Richardson,et al.  Modeling large air fraction holey optical fibers , 2000, Journal of Lightwave Technology.

[5]  Michael J. Steel,et al.  Polarization and dispersive properties of elliptical-hole photonic crystal fibers , 2001 .

[6]  Masanori Koshiba,et al.  A vector finite element method with the high-order mixed-interpolation-type triangular elements for optical waveguiding problems , 1994 .

[7]  D J Richardson,et al.  2R-regenerative all-optical switch based on a highly nonlinear holey fiber. , 2001, Optics letters.

[8]  Luca Vincetti,et al.  Impact of the cell geometry on the spectral properties of photonic crystal structures , 2001 .

[9]  R. McPhedran,et al.  Symmetry and degeneracy in microstructured optical fibers. , 2001, Optics letters.

[10]  Stefano Selleri,et al.  Modal analysis of rib waveguide through finite element and mode matching methods , 2001 .

[11]  D. M. Atkin,et al.  All-silica single-mode optical fiber with photonic crystal cladding. , 1996, Optics letters.

[12]  D J Richardson,et al.  Holey fibers with random cladding distributions. , 2000, Optics letters.

[13]  F. Heismann Tutorial: Polarization mode dispersion: Fundamentals and impact on optical communication systems , 1998, 24th European Conference on Optical Communication. ECOC '98 (IEEE Cat. No.98TH8398).

[14]  Luca Vincetti,et al.  Complex FEM modal solver of optical waveguides with PML boundary conditions , 2001 .

[15]  F. Fernández,et al.  Review of finite element methods for microwave and optical waveguides , 1991, Proc. IEEE.

[16]  Stefano Selleri,et al.  Boundary conditions and use of symmetries in electromagnetic waveguide sparse matrix finite element method problems , 2000 .

[17]  Luca Vincetti,et al.  Photonic Crystals: Analysis and Design Approaches Based on the Finite Element Method , 2001 .

[18]  Miguel V. Andrés,et al.  Designing a photonic crystal fibre with flattened chromatic dispersion , 1999 .

[19]  P. Russell,et al.  Endlessly single-mode photonic crystal fiber. , 1997, Optics letters.

[20]  Luca Vincetti,et al.  Photonic crystal fibers: perturbation analysis of polarization and dispersion properties , 2002, Optical Fiber Communication Conference and Exhibit.

[21]  Vincetti,et al.  Three-dimensional finite-element beam propagation method: assessments and developments , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[22]  D J Richardson,et al.  Toward practical holey fiber technology: fabrication, splicing, modeling, and characterization. , 1999, Optics letters.

[23]  T A Birks,et al.  Group-velocity dispersion in photonic crystal fibers. , 1998, Optics letters.

[24]  David J. Richardson,et al.  Holey optical fibers: an efficient modal model , 1999 .

[25]  A. Stentz,et al.  Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm , 2000 .

[26]  J. Arriaga,et al.  Anomalous dispersion in photonic crystal fiber , 2000, IEEE Photonics Technology Letters.

[27]  Stefano Selleri,et al.  Performance comparison of finite-element approaches for electromagnetic waveguides , 1997 .

[28]  Timothy A. Birks,et al.  Properties of photonic crystal fiber and the effective index model , 1998 .

[29]  Anders Bjarklev,et al.  Polarization properties of photonic bandgap fibers , 2000, Optical Fiber Communication Conference. Technical Digest Postconference Edition. Trends in Optics and Photonics Vol.37 (IEEE Cat. No. 00CH37079).