Integrated potentiostat for neurotransmitter sensing

We have presented a chemical analysis paradigm for neurochemical studies, as opposed to the traditional electrophysiological regime. We described electrochemical analysis and the instrumentation involved in doing such analysis. The article presents the design and characterization of a 16-channel, high-sensitivity, wide-range VLSI potentiostat. We demonstrate the use of this potentiostat in real-time in vitro monitoring of the neurotransmitter dopamine.

[1]  A. Burewicz,et al.  Measurements of nitric oxide in biological materials using a porphyrinic microsensor , 1993 .

[2]  Gert Cauwenberghs,et al.  Power harvesting and telemetry in CMOS for implanted devices , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[3]  Paul M. George,et al.  Fabrication of Screen-Printed Carbon Electrode Arrays for Sensing Neuronal Messengers , 2001 .

[4]  R. J. Vetter,et al.  Silicon-substrate intracortical microelectrode arrays for long-term recording of neuronal spike activity in cerebral cortex , 2003, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[5]  R. Braman,et al.  Nanogram nitrite and nitrate determination in environmental and biological materials by vanadium (III) reduction with chemiluminescence detection. , 1989, Analytical chemistry.

[6]  Gert Cauwenberghs,et al.  VLSI potentiostat array for distributed electrochemical neural recording , 2002, 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353).

[7]  R. Kakerow,et al.  Low-power Single-chip CMOS Potentiostat , 1995, Proceedings of the International Solid-State Sensors and Actuators Conference - TRANSDUCERS '95.

[8]  G. Cauwenberghs,et al.  Wide-range, picoampere-sensitivity multichannel VLSI potentiostat for neurotransmitter sensing , 2004, The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[9]  R Schlösser [Detection of neurotransmitter interactions with PET and SPECT by pharmacological challenge paradigms]. , 2000, Der Nervenarzt.

[10]  T. M. Brown,et al.  By Electrochemical methods , 2007 .

[11]  I. Baranowska,et al.  Liquid chromatography in the analysis of neurotransmitters and alkaloids. , 2002, Journal of chromatographic science.

[12]  J. Simpson THE RELEASE OF NEURAL TRANSMITTER SUBSTANCES , 1969 .

[13]  N. Thakor,et al.  Design and microfabrication of a polymer-modified carbon sensor array for the measurement of neurotransmitter signals , 2003, Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No.03CH37439).

[14]  M. Dragunow,et al.  Neurochemical and morphological changes associated with human epilepsy , 1995, Brain Research Reviews.

[15]  R. Schlösser,et al.  Erfassung von Neurotransmitterinteraktionen mit PET und SPECT durch pharmakologische Challenge-Paradigmen , 2000, Der Nervenarzt.

[16]  Gabor C. Temes,et al.  Oversampling Delta Sigma Data Converters , 1991 .

[17]  M. Delong,et al.  Pathophysiology of parkinsonian motor abnormalities. , 1993, Advances in neurology.

[18]  K. Santhanam,et al.  AN IN VITRO ELECTROCHEMICAL SENSING OF DOPAMINE IN THE PRESENCE OF ASCORBIC ACID , 1995 .

[19]  Robin F. B. Turner,et al.  A CMOS potentiostat for amperometric chemical sensors , 1987 .