From discrete arithmetic to arithmetic of the continuum

We explore the potential of Simon Stevin’s numbers, obscured by shifting foundational biases and by 19th century developments in the arithmetisation of analysis.

[1]  J. Bell A primer of infinitesimal analysis , 1998 .

[2]  F. William Lawvere,et al.  Toward the description in a smooth topos of the dynamically possible motions and deformations of a continuous body , 1980 .

[3]  T. Skolem Über die Nicht-charakterisierbarkeit der Zahlenreihe mittels endlich oder abzählbar unendlich vieler Aussagen mit ausschliesslich Zahlenvariablen , 1934 .

[4]  Howard Eves,et al.  An Introduction To The Foundations And Fundamental Concepts Of Mathematics , 1965 .

[5]  Edwin Hewitt,et al.  Rings of real-valued continuous functions. I , 1948 .

[6]  Jérôme Havenel Peirce's Clarifications of Continuity , 2008 .

[7]  Robert Goldblatt,et al.  Lectures on the hyperreals , 1998 .

[8]  David Tall,et al.  The transition to formal thinking in mathematics , 2008 .

[9]  A. Robinson Non-standard analysis , 1966 .

[10]  Karin U. Katz,et al.  When is .999... less than 1? , 2010, The Mathematics Enthusiast.

[11]  R. Ely Nonstandard Student Conceptions About Infinitesimals , 2010 .

[12]  D. Tall,et al.  THE TENSION BETWEEN INTUITIVE INFINITESIMALS AND FORMAL MATHEMATICAL ANALYSIS , 2011, 1110.5747.

[13]  John P. Burgess,et al.  A Subject with No Object: Strategies for Nominalistic Interpretation of Mathematics , 2001 .

[14]  A. Cauchy Cours d'analyse de l'École royale polytechnique , 1821 .

[15]  D. Fowler Dedekind's Theorem: , 1992 .

[17]  J. Dauben C. S. Peirce's Philosophy of Infinite Sets , 1977 .

[18]  Numbers and models, standard and nonstandard , 2010 .

[19]  Geoffrey Hellman,et al.  Mathematics without Numbers: Towards a Modal-Structural Interpretation , 1989 .

[20]  J. Naets How to Define a Number? A General Epistemological Account of Simon Stevin’s Art of Defining , 2010 .

[21]  Lorenzo Magnani,et al.  Perceiving the Infinite and the Infinitesimal World: Unveiling and Optical Diagrams in Mathematics , 2005 .

[22]  Leif Arkeryd,et al.  Intermolecular forces of infinite range and the Boltzmann equation , 1981 .

[23]  Mikhail G. Katz,et al.  Leibniz's laws of continuity and homogeneity , 2012, 1211.7188.

[24]  D. J. Winter A History of Algebra. , 1988 .

[25]  Heinrich Rust Operational Semantics for Timed Systems: A Non-standard Approach to Uniform Modeling of Timed and Hybrid Systems , 2005, Lecture Notes in Computer Science.

[26]  S. Shapiro,et al.  Mathematics without Numbers , 1993 .

[27]  D. Tall Looking at graphs through infinitesimal microscopes, windows and telescopes , 1980, The Mathematical Gazette.

[28]  E. Seneta Cauchy, Augustin–Louis , 2006 .

[29]  David Sherry,et al.  The wake of Berkeley's analyst: Rigor mathematicae? , 1987 .

[30]  G. Lakoff,et al.  Where Mathematics Comes From , 2000 .

[31]  Detlef Laugwitz Infinitely small quantities in Cauchy's textbooks , 1987 .

[32]  P. Zsombor-Murray,et al.  Elementary Mathematics from an Advanced Standpoint , 1940, Nature.

[33]  Augusto Hasman,et al.  Comments on the paper , 2012 .

[34]  A. Tarski,et al.  Une contribution à la théorie de la mesure , 1930 .

[35]  C. Peirce How to Make Our Ideas Clear , 2011, The Nature of Truth.

[36]  René Taton,et al.  The Principal Works of Simon Stevin , 1959 .

[37]  H. Keisler Elementary Calculus: An Infinitesimal Approach , 1976 .

[38]  Mikhail G. Katz,et al.  Cauchy's Continuum , 2011, Perspectives on Science.

[39]  Mikhail G. Katz,et al.  Zooming in on infinitesimal 1–.9.. in a post-triumvirate era , 2010, 1003.1501.

[40]  J. Dauben Peirce's place in mathematics , 1982 .

[41]  Martin Davis,et al.  Applied Nonstandard Analysis , 1977 .

[42]  G. Lakoff,et al.  Where mathematics comes from : how the embodied mind brings mathematics into being , 2002 .

[43]  Augustin-Louis Cauchy Oeuvres complètes: LEÇONS SUR LE CALCUL DIFFÉRENTIEL , 2009 .

[44]  Christoph J. Scriba,et al.  B. L. van der Waerden: A History of Algebra. From al‐Khwarizmi to Emmy Noether. Berlin/Heidelberg/New York/Tokyo: Springer‐Verlag 1985. xi, 271 Seiten, 28 Figuren. Leinen, DM 98,‐. , 1987 .

[45]  Solomon Gandz,et al.  The Invention of the Decimal Fractions and the Application of the Exponential Calculus by Immanuel Bonfils of Tarascon (c. 1350) , 1936, Isis.

[46]  Mikhail G. Katz,et al.  Ten Misconceptions from the History of Analysis and Their Debunking , 2012, 1202.4153.

[47]  S. Albeverio Nonstandard Methods in Stochastic Analysis and Mathematical Physics , 1986 .

[48]  M. E. Moore The completeness of the real line , 2007 .

[49]  Implicit Differentiation with Microscopes , 2010 .

[50]  Detlef Laugwitz,et al.  Comments on the paper “Two letters by N. N. Luzin to M. Ya. Vygodskiῐ” , 2000, Am. Math. Mon..

[51]  Desmond Fearnley-Sander,et al.  Hermann Grassmann and the Creation of Linear Algebra , 1979 .

[52]  Ekkehard Kopp,et al.  On Cauchy's Notion of Infinitesimal , 1988, The British Journal for the Philosophy of Science.

[53]  H. Jerome Keisler,et al.  The Hyperreal Line , 1994 .

[54]  C. Allen,et al.  Stanford Encyclopedia of Philosophy , 2011 .

[55]  Lorenzo Magnani,et al.  Mathematics through Diagrams: Microscopes in Non-Standard and Smooth Analysis , 2007, Model-Based Reasoning in Science, Technology, and Medicine.

[56]  Augustin-Louis Cauchy Oeuvres complètes: Mémoire sur les développements des fonctions en séries périodiques , 2009 .

[57]  Mikhail G. Katz,et al.  Meaning in Classical Mathematics: Is it at Odds with Intuitionism? , 2011, 1110.5456.

[58]  Charles Coulston Gillispie,et al.  Dictionary of scientific biography , 1970 .

[59]  Antoni Malet,et al.  Renaissance notions of number and magnitude , 2006 .

[60]  Alexandre Borovik,et al.  Who Gave You the Cauchy–Weierstrass Tale? The Dual History of Rigorous Calculus , 2011, 1108.2885.

[61]  D. Laugwitz Early delta functions and the use of infinitesimals in research , 1992 .

[62]  Philip Ehrlich,et al.  The Rise of non-Archimedean Mathematics and the Roots of a Misconception I: The Emergence of non-Archimedean Systems of Magnitudes , 2006 .

[63]  Gert Schubring,et al.  Conflicts between Generalization, Rigor and Intuition. Number Concepts Underlying the Development of Analysis in 17th-19th Century France and Germany , 2005 .

[64]  Carl B. Boyer,et al.  The Concepts of the Calculus , 1940 .

[65]  J. Burgess,et al.  A Subject with no Object , 1999 .

[66]  Kajsa Bråting,et al.  A new look at E.G. Björling and the Cauchy sum theorem , 2007 .

[67]  Jerzy Loś,et al.  Quelques Remarques, Théorèmes Et Problèmes Sur Les Classes Définissables D'algèbres , 1955 .

[68]  Augustin-Louis Cauchy Oeuvres complètes: ANALYSE MATHÉMATIQUE. — Note sur les séries convergentes dont les divers termes sont des fonctions continues d'une variable réelle ou imaginaire, entre des limites données , 2009 .

[69]  D. Laugwitz Definite values of infinite sums: Aspects of the foundations of infinitesimal analysis around 1820 , 1989 .

[70]  K. D. Stroyan Uniform Continuity and Rates of Growth of Meromorphic Functions1) , 1972 .

[71]  Mikhail G. Katz,et al.  A Burgessian Critique of Nominalistic Tendencies in Contemporary Mathematics and its Historiography , 2011, 1104.0375.

[72]  R. Goldblatt Lectures on the hyperreals : an introduction to nonstandard analysis , 1998 .