A remarkable representation of the Clifford group
暂无分享,去创建一个
[1] D. Mumford. Tata Lectures on Theta I , 1982 .
[2] Huangjun Zhu. SIC POVMs and Clifford groups in prime dimensions , 2010, 1003.3591.
[3] P. Oscar Boykin,et al. A New Proof for the Existence of Mutually Unbiased Bases , 2002, Algorithmica.
[4] D. M. Appleby. SIC‐POVMS and MUBS: Geometrical Relationships in Prime Dimension , 2009 .
[5] Y. S. Teo,et al. Two-qubit symmetric informationally complete positive-operator-valued measures , 2010 .
[6] Berthold-Georg Englert,et al. Structure of Two-qubit Symmetric Informationally Complete POVMs , 2010 .
[7] Aephraim M. Steinberg,et al. Experimental characterization of qutrits using SIC-POVMs , 2010 .
[8] Aephraim M. Steinberg,et al. Experimental characterization of qutrits using symmetric informationally complete positive operator-valued measurements , 2011 .
[9] Markus Grassl,et al. The monomial representations of the Clifford group , 2011, Quantum Inf. Comput..
[10] Ingemar Bengtsson,et al. From SICs and MUBs to Eddington , 2010, 1103.2030.
[11] H. Weyl. The Theory Of Groups And Quantum Mechanics , 1931 .
[12] A. J. Scott,et al. Symmetric informationally complete positive-operator-valued measures: A new computer study , 2010 .
[13] Andrew M. Childs,et al. The limitations of nice mutually unbiased bases , 2004, quant-ph/0412066.
[14] W. Wootters,et al. Optimal state-determination by mutually unbiased measurements , 1989 .
[15] C. Fuchs. QBism, the Perimeter of Quantum Bayesianism , 2010, 1003.5209.
[16] Mahdad Khatirinejad,et al. On Weyl-Heisenberg orbits of equiangular lines , 2008 .