Approximate Distance Labeling Schemes

Abstract In this paper we show how to label the nodes of every interval graphs of diameter D with integers of size [log- D ] + 1 bits so that the distance up to an additive factor 1 between two distinct nodes can be computed in constant time from their labels only. The technique we propose may be generalized to prove additive O (1)-approximate distance labeling schemes for more general class of graphs including various intersecting classes of graphs, like chordal and circle graphs.

[1]  Michael L. Fredman,et al.  Surpassing the Information Theoretic Bound with Fusion Trees , 1993, J. Comput. Syst. Sci..

[2]  Peter Winkler,et al.  Proof of the squashed cube conjecture , 1983, Comb..

[3]  Greg N. Frederickson,et al.  Efficient Message Routing in Planar Networks , 1989, SIAM J. Comput..

[4]  Paul D. Seymour,et al.  Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.

[5]  Melvin A. Breuer,et al.  An unexpected result in coding the vertices of a graph , 1967 .

[6]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[7]  David Peleg,et al.  Distance labeling schemes for well-separated graph classes , 2000, Discret. Appl. Math..

[8]  A. Rényii,et al.  ON A PROBLEM OF GRAPH THEORY , 1966 .

[9]  David Peleg,et al.  Approximate Distance Labeling Schemes , 2001, ESA.

[10]  Ran Raz,et al.  Distance labeling in graphs , 2001, SODA '01.

[11]  F. Lazebnik,et al.  A new series of dense graphs of high girth , 1995, math/9501231.

[12]  Stephan Olariu,et al.  Asteroidal Triple-Free Graphs , 1993, SIAM J. Discret. Math..

[13]  Venkatesh Raman,et al.  Succinct representation of balanced parentheses, static trees and planar graphs , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[14]  David Peleg,et al.  Proximity-Preserving Labeling Schemes and Their Applications , 1999, WG.

[15]  Moni Naor,et al.  Implicit Representation of Graphs , 1992, SIAM J. Discret. Math..

[16]  Melvin A. Breuer,et al.  Coding the vertexes of a graph , 1966, IEEE Trans. Inf. Theory.

[17]  John L. Smith Tables , 1969, Neuromuscular Disorders.

[18]  R. Graham,et al.  On embedding graphs in squashed cubes , 1972 .

[19]  C. Lekkeikerker,et al.  Representation of a finite graph by a set of intervals on the real line , 1962 .