Addressable electron spin resonance using donors and donor molecules in silicon
暂无分享,去创建一个
Michelle Y. Simmons | Yu Wang | Rajib Rahman | Matthew Broome | M. Broome | R. Rahman | M. Simmons | Chin-Yi Chen | Yu Wang | J. G. Keizer | Lukas Fricke | Samuel J. Hile | M. House | Eldad Peretz | Matthew G. House | S. K. Gorman | S. Hile | L. Fricke | Chin Yi Chen | Samuel K. Gorman | Joris G. Keizer | E. Peretz | J. Keizer
[1] Gerhard Klimeck,et al. High precision quantum control of single donor spins in silicon. , 2007, Physical review letters.
[2] Gerhard Klimeck,et al. Mapping donor electron wave function deformations at a sub-Bohr orbit resolution. , 2009, Physical review letters.
[3] C. Buizert,et al. Driven coherent oscillations of a single electron spin in a quantum dot , 2006, Nature.
[4] Xuedong Hu,et al. Exchange in silicon-based quantum computer architecture. , 2002, Physical review letters.
[5] John Bardeen,et al. Nuclear Polarization and Impurity-State Spin Relaxation Processes in Silicon , 1957 .
[6] Alexei M. Tyryshkin,et al. Stark tuning of donor electron spins in silicon. , 2006 .
[7] Mark Friesen. Theory of the Stark effect for P donors in Si. , 2005, Physical review letters.
[8] Michelle Y. Simmons,et al. Measurement of phosphorus segregation in silicon at the atomic scale using scanning tunneling microscopy , 2003 .
[9] R. Rahman,et al. Spin readout and addressability of phosphorus-donor clusters in silicon , 2012, Nature Communications.
[10] M. Lagally,et al. Excitation of a Si/SiGe quantum dot using an on-chip microwave antenna , 2013, 1301.2126.
[11] L. Hollenberg,et al. Atomically engineered electron spin lifetimes of 30 s in silicon , 2017, Science Advances.
[12] L DelaBarre,et al. The return of the frequency sweep: designing adiabatic pulses for contemporary NMR. , 2001, Journal of magnetic resonance.
[13] B. Weber,et al. High-Fidelity Rapid Initialization and Read-Out of an Electron Spin via the Single Donor D(-) Charge State. , 2015, Physical review letters.
[14] Shinichi Tojo,et al. Electron spin coherence exceeding seconds in high-purity silicon. , 2011, Nature materials.
[15] L. Oberbeck,et al. The use of etched registration markers to make four-terminal electrical contacts to STM-patterned nanostructures , 2005, Nanotechnology.
[16] J. P. Dehollain,et al. High-fidelity adiabatic inversion of a $^{31}\mathrm{P}$ electron spin qubit in natural silicon , 2013, 1312.4647.
[17] L. Oberbeck,et al. Effect of encapsulation temperature on Si:P δ-doped layers , 2004 .
[18] G. Schmid. The Nature of Nanotechnology , 2010 .
[19] Gerhard Klimeck,et al. Characterizing Si:P quantum dot qubits with spin resonance techniques , 2016, Scientific Reports.
[20] Andrew S. Dzurak,et al. A single-atom electron spin qubit in silicon , 2012, Nature.
[21] Nguyen D. Hien,et al. Physica E: Low-dimensional Systems and Nanostructures , 2017 .
[22] Gerhard Klimeck,et al. Spin-lattice relaxation times of single donors and donor clusters in silicon. , 2014, Physical review letters.
[23] Kindler-Rohrborn,et al. In press , 1994, Molecular carcinogenesis.
[24] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[25] M. Y. Simmons,et al. High-Fidelity Single-Shot Singlet-Triplet Readout of Precision-Placed Donors in Silicon. , 2017, Physical review letters.
[26] Gerhard Klimeck,et al. Electrically controlling single-spin qubits in a continuous microwave field , 2015, Science Advances.
[27] S. Sarma,et al. Statistical exchange-coupling errors and the practicality of scalable silicon donor qubits , 2016, 1611.02808.
[28] B. E. Kane. A silicon-based nuclear spin quantum computer , 1998, Nature.
[29] Anisotropic stark effect and electric-field noise suppression for phosphorus donor qubits in silicon. , 2014, Physical review letters.
[30] Michelle Y. Simmons,et al. Thermal dissociation and desorption of PH3 on Si(001): A reinterpretation of spectroscopic data , 2006 .
[31] P. Boross,et al. Valley-enhanced fast relaxation of gate-controlled donor qubits in silicon , 2016, Nanotechnology.
[32] Gavin W. Morley,et al. Fast nuclear spin hyperpolarization of phosphorus in silicon. , 2008, Physical review letters.
[33] Gerhard Klimeck,et al. Highly tunable exchange in donor qubits in silicon , 2016, npj Quantum Information.
[34] M. L. W. Thewalt,et al. Quantum Information Storage for over 180 s Using Donor Spins in a 28Si “Semiconductor Vacuum” , 2012, Science.
[35] J. P. Dehollain,et al. Nanoscale broadband transmission lines for spin qubit control , 2012, Nanotechnology.
[36] Electrical detection of coherent 31P spin quantum states , 2006, quant-ph/0607178.
[37] Takashi Nakajima,et al. Coherent electron-spin-resonance manipulation of three individual spins in a triple quantum dot , 2016 .
[38] G. Feher,et al. Electron Spin Resonance Experiments on Donors in Silicon. I. Electronic Structure of Donors by the Electron Nuclear Double Resonance Technique , 1959 .
[39] Gerhard Klimeck,et al. Spin blockade and exchange in Coulomb-confined silicon double quantum dots. , 2014, Nature nanotechnology.
[40] Gerhard Klimeck,et al. Development of a Nanoelectronic 3-D (NEMO 3-D ) Simulator for Multimillion Atom Simulations and Its Application to Alloyed Quantum Dots , 2002 .
[41] M. Simmons,et al. Investigating the surface quality and confinement of Si:P δ-layers at different growth temperatures , 2010 .
[42] L. Vandersypen,et al. Single-shot read-out of an individual electron spin in a quantum dot , 2004, Nature.
[43] J. P. Dehollain,et al. Quantifying the quantum gate fidelity of single-atom spin qubits in silicon by randomized benchmarking , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.
[44] Eugene E. Haller,et al. Solid-state quantum memory using the 31P nuclear spin , 2008, Nature.
[45] J. Bokor,et al. Stark shift and field ionization of arsenic donors in 28Si-silicon-on-insulator structures , 2014, 1401.6885.
[46] D. Mckenzie,et al. Pathways for thermal phosphorus desorption from the silicon (001) surface , 2010 .
[47] B. Koiller,et al. Theory of one and two donors in silicon , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.
[48] S. Das Sarma,et al. Silicon quantum computation based on magnetic dipolar coupling (6 pages) , 2003, cond-mat/0311403.
[49] T. Boykin,et al. Conduction-band tight-binding description for Si applied to P donors , 2005, cond-mat/0612240.
[50] G. Klimeck,et al. NEMO5: A Parallel Multiscale Nanoelectronics Modeling Tool , 2011, IEEE Transactions on Nanotechnology.
[51] M Y Simmons,et al. Atomically precise placement of single dopants in si. , 2003, Physical review letters.
[52] C D Hill,et al. Two-electron spin correlations in precision placed donors in silicon , 2018, Nature Communications.
[53] Andrea Morello,et al. Robust Two-Qubit Gates for Donors in Silicon Controlled by Hyperfine Interactions , 2013, 1312.2197.
[54] Andrew S. Dzurak,et al. High-fidelity readout and control of a nuclear spin qubit in silicon , 2013, Nature.
[55] J. P. Dehollain,et al. An addressable quantum dot qubit with fault-tolerant control-fidelity. , 2014, Nature nanotechnology.
[56] M. L. W. Thewalt,et al. Hyperfine Stark effect of shallow donors in silicon , 2014, 1408.4375.
[57] L. Hollenberg,et al. Spatial metrology of dopants in silicon with exact lattice site precision. , 2016, Nature nanotechnology.