Addressable electron spin resonance using donors and donor molecules in silicon

Built-in hyperfine couplings of donor qubits engineered by precision placement promote addressable electron spin resonance. Phosphorus donor impurities in silicon are a promising candidate for solid-state quantum computing due to their exceptionally long coherence times and high fidelities. However, individual addressability of exchange coupled donors with separations ~15 nm is challenging. We show that by using atomic precision lithography, we can place a single P donor next to a 2P molecule 16 ± 1 nm apart and use their distinctive hyperfine coupling strengths to address qubits at vastly different resonance frequencies. In particular, the single donor yields two hyperfine peaks separated by 97 ± 2.5 MHz, in contrast to the donor molecule that exhibits three peaks separated by 262 ± 10 MHz. Atomistic tight-binding simulations confirm the large hyperfine interaction strength in the 2P molecule with an interdonor separation of ~0.7 nm, consistent with lithographic scanning tunneling microscopy images of the 2P site during device fabrication. We discuss the viability of using donor molecules for built-in addressability of electron spin qubits in silicon.

[1]  Gerhard Klimeck,et al.  High precision quantum control of single donor spins in silicon. , 2007, Physical review letters.

[2]  Gerhard Klimeck,et al.  Mapping donor electron wave function deformations at a sub-Bohr orbit resolution. , 2009, Physical review letters.

[3]  C. Buizert,et al.  Driven coherent oscillations of a single electron spin in a quantum dot , 2006, Nature.

[4]  Xuedong Hu,et al.  Exchange in silicon-based quantum computer architecture. , 2002, Physical review letters.

[5]  John Bardeen,et al.  Nuclear Polarization and Impurity-State Spin Relaxation Processes in Silicon , 1957 .

[6]  Alexei M. Tyryshkin,et al.  Stark tuning of donor electron spins in silicon. , 2006 .

[7]  Mark Friesen Theory of the Stark effect for P donors in Si. , 2005, Physical review letters.

[8]  Michelle Y. Simmons,et al.  Measurement of phosphorus segregation in silicon at the atomic scale using scanning tunneling microscopy , 2003 .

[9]  R. Rahman,et al.  Spin readout and addressability of phosphorus-donor clusters in silicon , 2012, Nature Communications.

[10]  M. Lagally,et al.  Excitation of a Si/SiGe quantum dot using an on-chip microwave antenna , 2013, 1301.2126.

[11]  L. Hollenberg,et al.  Atomically engineered electron spin lifetimes of 30 s in silicon , 2017, Science Advances.

[12]  L DelaBarre,et al.  The return of the frequency sweep: designing adiabatic pulses for contemporary NMR. , 2001, Journal of magnetic resonance.

[13]  B. Weber,et al.  High-Fidelity Rapid Initialization and Read-Out of an Electron Spin via the Single Donor D(-) Charge State. , 2015, Physical review letters.

[14]  Shinichi Tojo,et al.  Electron spin coherence exceeding seconds in high-purity silicon. , 2011, Nature materials.

[15]  L. Oberbeck,et al.  The use of etched registration markers to make four-terminal electrical contacts to STM-patterned nanostructures , 2005, Nanotechnology.

[16]  J. P. Dehollain,et al.  High-fidelity adiabatic inversion of a $^{31}\mathrm{P}$ electron spin qubit in natural silicon , 2013, 1312.4647.

[17]  L. Oberbeck,et al.  Effect of encapsulation temperature on Si:P δ-doped layers , 2004 .

[18]  G. Schmid The Nature of Nanotechnology , 2010 .

[19]  Gerhard Klimeck,et al.  Characterizing Si:P quantum dot qubits with spin resonance techniques , 2016, Scientific Reports.

[20]  Andrew S. Dzurak,et al.  A single-atom electron spin qubit in silicon , 2012, Nature.

[21]  Nguyen D. Hien,et al.  Physica E: Low-dimensional Systems and Nanostructures , 2017 .

[22]  Gerhard Klimeck,et al.  Spin-lattice relaxation times of single donors and donor clusters in silicon. , 2014, Physical review letters.

[23]  Kindler-Rohrborn,et al.  In press , 1994, Molecular carcinogenesis.

[24]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[25]  M. Y. Simmons,et al.  High-Fidelity Single-Shot Singlet-Triplet Readout of Precision-Placed Donors in Silicon. , 2017, Physical review letters.

[26]  Gerhard Klimeck,et al.  Electrically controlling single-spin qubits in a continuous microwave field , 2015, Science Advances.

[27]  S. Sarma,et al.  Statistical exchange-coupling errors and the practicality of scalable silicon donor qubits , 2016, 1611.02808.

[28]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[29]  Anisotropic stark effect and electric-field noise suppression for phosphorus donor qubits in silicon. , 2014, Physical review letters.

[30]  Michelle Y. Simmons,et al.  Thermal dissociation and desorption of PH3 on Si(001): A reinterpretation of spectroscopic data , 2006 .

[31]  P. Boross,et al.  Valley-enhanced fast relaxation of gate-controlled donor qubits in silicon , 2016, Nanotechnology.

[32]  Gavin W. Morley,et al.  Fast nuclear spin hyperpolarization of phosphorus in silicon. , 2008, Physical review letters.

[33]  Gerhard Klimeck,et al.  Highly tunable exchange in donor qubits in silicon , 2016, npj Quantum Information.

[34]  M. L. W. Thewalt,et al.  Quantum Information Storage for over 180 s Using Donor Spins in a 28Si “Semiconductor Vacuum” , 2012, Science.

[35]  J. P. Dehollain,et al.  Nanoscale broadband transmission lines for spin qubit control , 2012, Nanotechnology.

[36]  Electrical detection of coherent 31P spin quantum states , 2006, quant-ph/0607178.

[37]  Takashi Nakajima,et al.  Coherent electron-spin-resonance manipulation of three individual spins in a triple quantum dot , 2016 .

[38]  G. Feher,et al.  Electron Spin Resonance Experiments on Donors in Silicon. I. Electronic Structure of Donors by the Electron Nuclear Double Resonance Technique , 1959 .

[39]  Gerhard Klimeck,et al.  Spin blockade and exchange in Coulomb-confined silicon double quantum dots. , 2014, Nature nanotechnology.

[40]  Gerhard Klimeck,et al.  Development of a Nanoelectronic 3-D (NEMO 3-D ) Simulator for Multimillion Atom Simulations and Its Application to Alloyed Quantum Dots , 2002 .

[41]  M. Simmons,et al.  Investigating the surface quality and confinement of Si:P δ-layers at different growth temperatures , 2010 .

[42]  L. Vandersypen,et al.  Single-shot read-out of an individual electron spin in a quantum dot , 2004, Nature.

[43]  J. P. Dehollain,et al.  Quantifying the quantum gate fidelity of single-atom spin qubits in silicon by randomized benchmarking , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[44]  Eugene E. Haller,et al.  Solid-state quantum memory using the 31P nuclear spin , 2008, Nature.

[45]  J. Bokor,et al.  Stark shift and field ionization of arsenic donors in 28Si-silicon-on-insulator structures , 2014, 1401.6885.

[46]  D. Mckenzie,et al.  Pathways for thermal phosphorus desorption from the silicon (001) surface , 2010 .

[47]  B. Koiller,et al.  Theory of one and two donors in silicon , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[48]  S. Das Sarma,et al.  Silicon quantum computation based on magnetic dipolar coupling (6 pages) , 2003, cond-mat/0311403.

[49]  T. Boykin,et al.  Conduction-band tight-binding description for Si applied to P donors , 2005, cond-mat/0612240.

[50]  G. Klimeck,et al.  NEMO5: A Parallel Multiscale Nanoelectronics Modeling Tool , 2011, IEEE Transactions on Nanotechnology.

[51]  M Y Simmons,et al.  Atomically precise placement of single dopants in si. , 2003, Physical review letters.

[52]  C D Hill,et al.  Two-electron spin correlations in precision placed donors in silicon , 2018, Nature Communications.

[53]  Andrea Morello,et al.  Robust Two-Qubit Gates for Donors in Silicon Controlled by Hyperfine Interactions , 2013, 1312.2197.

[54]  Andrew S. Dzurak,et al.  High-fidelity readout and control of a nuclear spin qubit in silicon , 2013, Nature.

[55]  J. P. Dehollain,et al.  An addressable quantum dot qubit with fault-tolerant control-fidelity. , 2014, Nature nanotechnology.

[56]  M. L. W. Thewalt,et al.  Hyperfine Stark effect of shallow donors in silicon , 2014, 1408.4375.

[57]  L. Hollenberg,et al.  Spatial metrology of dopants in silicon with exact lattice site precision. , 2016, Nature nanotechnology.