Equistable simplicial, very well-covered, and line graphs

We verify the conjectures of Mahadev-Peled-Sun and of Orlin, both related to equistable graphs, for the classes of simplicial, very well-covered and line graphs. Our results are based on the combinatorial features of triangle graphs and general partition graphs. In particular, we obtain several equivalent characterizations of equistable simplicial graphs, equistable very well-covered graphs, and equistable line graphs, some of which imply polynomial time recognition algorithms for graphs in these classes.

[1]  Nick Roussopoulos,et al.  A MAX{m, n} Algorithm for Determining the Graph H from Its Line Graph C , 1973, Inf. Process. Lett..

[2]  Duane W. DeTemple,et al.  When are chordal graphs also partition graphs? , 1997, Australas. J Comb..

[3]  M. Golumbic Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, Vol 57) , 2004 .

[4]  Udi Rotics,et al.  Equistable chordal graphs , 2003, Discret. Appl. Math..

[5]  Gábor Rudolf,et al.  Complexity results for equistable graphs and related classes , 2011, Ann. Oper. Res..

[6]  Gábor Rudolf,et al.  Structural Results for Equistable Graphs and Related Graph Classes , 2009 .

[7]  Duane W. DeTemple,et al.  A characterization and hereditary properties for partitoon graphs , 1993, Discret. Math..

[8]  Robert E. Tarjan,et al.  Faster scaling algorithms for general graph matching problems , 1991, JACM.

[9]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[10]  Martin Charles Golumbic,et al.  Trivially perfect graphs , 1978, Discret. Math..

[11]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[12]  Martin Milanic,et al.  Equistable graphs, general partition graphs, triangle graphs, and graph products , 2011, Discret. Appl. Math..

[13]  Duane W. DeTemple,et al.  Recent examples in the theory of partition graphs , 1993, Discret. Math..

[14]  Gerd Finke,et al.  On the complexity of the independent set problem in triangle graphs , 2011, Discret. Math..

[15]  M. Golumbic Chapter 3 - Perfect graphs , 2004 .

[16]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[17]  M. Plummer Some covering concepts in graphs , 1970 .

[18]  Noga Alon,et al.  Fast Algorithms for Maximum Subset Matching and All-Pairs Shortest Paths in Graphs with a (Not So) Small Vertex Cover , 2007, ESA.

[19]  Yury L. Orlovich,et al.  Independent Domination in Triangle Graphs , 2007, Electron. Notes Discret. Math..

[20]  Odile Favaron Very well covered graphs , 1982, Discret. Math..

[21]  Ton Kloks,et al.  On the Recognition of General Partition Graphs , 2003, WG.

[22]  Grant A. Cheston,et al.  Journal of Graph Algorithms and Applications a Survey of the Algorithmic Properties of Simplicial, Upper Bound and Middle Graphs , 2022 .

[23]  Charles Payan,et al.  A class of threshold and domishold graphs: equistable and equidominating graphs , 1980, Discret. Math..

[24]  Duane W. DeTemple,et al.  Graphs associated with triangulations of lattice polygons , 1989 .

[25]  Gerard J. Chang,et al.  Quasi-threshold Graphs , 1996, Discret. Appl. Math..

[26]  N. Mahadev,et al.  Threshold graphs and related topics , 1995 .

[27]  Robert E. Tarjan,et al.  Efficiency of a Good But Not Linear Set Union Algorithm , 1972, JACM.

[28]  Udi Rotics,et al.  Equistable distance-hereditary graphs , 2008, Discret. Appl. Math..

[29]  P. Hammer,et al.  Aggregation of inequalities in integer programming. , 1975 .

[30]  David P. Summer Randomly matchable graphs , 1979, J. Graph Theory.

[31]  Ephraim Korach,et al.  Equistable series-parallel graphs , 2003, Discret. Appl. Math..

[32]  Feng Sun,et al.  Equistable graphs , 1994, J. Graph Theory.