Plant trait‐environment relationships in tundra are consistent across spatial scales

[1]  Nadejda A. Soudzilovskaia,et al.  The global spectrum of plant form and function: enhanced species-level trait dataset , 2022, Scientific Data.

[2]  Hjalte M. R. Mann,et al.  Winters are changing: snow effects on Arctic and alpine tundra ecosystems , 2022, Arctic Science.

[3]  Nadejda A. Soudzilovskaia,et al.  Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation , 2021, Nature ecology & evolution.

[4]  C. Tucker,et al.  Complex trait‒environment relationships underlie the structure of forest plant communities , 2021, Journal of Ecology.

[5]  M. Luoto,et al.  Snow information is required in subcontinental scale predictions of mountain plant distributions , 2021, Global Ecology and Biogeography.

[6]  Heidi K. Mod,et al.  Predicting spatial patterns of soil bacteria under current and future environmental conditions , 2021, The ISME Journal.

[7]  Anne D. Bjorkman,et al.  Annual air temperature variability and biotic interactions explain tundra shrub species abundance , 2021, Journal of Vegetation Science.

[8]  J. Lenoir,et al.  Global functional variation in alpine vegetation , 2021 .

[9]  B. Enquist,et al.  Consistent trait–environment relationships within and across tundra plant communities , 2021, Nature Ecology & Evolution.

[10]  M. Luoto,et al.  Decreasing snow cover alters functional composition and diversity of Arctic tundra , 2020, Proceedings of the National Academy of Sciences.

[11]  Jonas Ardö,et al.  SoilTemp: A global database of near‐surface temperature , 2020, Global change biology.

[12]  M. Luoto,et al.  Relationships between aboveground plant traits and carbon cycling in tundra plant communities , 2019, bioRxiv.

[13]  Andreas Kääb,et al.  High Mountain Areas , 2019, The Ocean and Cryosphere in a Changing Climate.

[14]  J. Aalto,et al.  Water as a resource, stress and disturbance shaping tundra vegetation , 2019, Oikos.

[15]  J. Wild,et al.  Climate at ecologically relevant scales: A new temperature and soil moisture logger for long-term microclimate measurement , 2019, Agricultural and Forest Meteorology.

[16]  J. Aalto,et al.  Snow is an important control of plant community functional composition in oroarctic tundra , 2019, Oecologia.

[17]  A. Classen,et al.  Drivers of C cycling in three arctic-alpine plant communities , 2019, Arctic, Antarctic, and Alpine Research.

[18]  Anne D. Bjorkman,et al.  Plant traits inform predictions of tundra responses to global change. , 2018, The New phytologist.

[19]  Steven F. Oberbauer,et al.  Tundra Trait Team: A database of plant traits spanning the tundra biome , 2018, Global Ecology and Biogeography.

[20]  Anne D. Bjorkman,et al.  Plant functional trait change across a warming tundra biome , 2018, Nature.

[21]  Anne D. Bjorkman,et al.  Global trait–environment relationships of plant communities , 2018, Nature Ecology & Evolution.

[22]  Miska Luoto,et al.  The importance of snow in species distribution models of arctic vegetation , 2018 .

[23]  M. Luoto,et al.  Modelling soil moisture in a high‐latitude landscape using LiDAR and soil data , 2018 .

[24]  J. Funk,et al.  Revisiting the Holy Grail: using plant functional traits to understand ecological processes , 2017, Biological reviews of the Cambridge Philosophical Society.

[25]  E. Meineri,et al.  Revealing topoclimatic heterogeneity using meteorological station data , 2017 .

[26]  Olaf Conrad,et al.  Climatologies at high resolution for the earth’s land surface areas , 2016, Scientific Data.

[27]  Yongwon Kim,et al.  Relationships Among pH, Minerals, and Carbon in Soils from Tundra to Boreal Forest Across Alaska , 2016, Ecosystems.

[28]  Michael Bock,et al.  System for Automated Geoscientific Analyses (SAGA) v. 2.1.4 , 2015 .

[29]  Elisabeth J. Cooper,et al.  Deeper snow alters soil nutrient availability and leaf nutrient status in high Arctic tundra , 2015, Biogeochemistry.

[30]  Nadejda A. Soudzilovskaia,et al.  Which is a better predictor of plant traits: temperature or precipitation? , 2014 .

[31]  G. Heuvelink,et al.  SoilGrids1km — Global Soil Information Based on Automated Mapping , 2014, PloS one.

[32]  B. Jurczyk,et al.  Overwintering of herbaceous plants in a changing climate. Still more questions than answers. , 2014, Plant science : an international journal of experimental plant biology.

[33]  P. Reich The world‐wide ‘fast–slow’ plant economics spectrum: a traits manifesto , 2014 .

[34]  P. Vittoz,et al.  Predicting current and future spatial community patterns of plant functional traits , 2013 .

[35]  Terry V. Callaghan,et al.  Rapid responses of permafrost and vegetation to experimentally increased snow cover in sub-arctic Sweden , 2013 .

[36]  M. Luoto,et al.  Geomorphological disturbance is necessary for predicting fine‐scale species distributions , 2013 .

[37]  Stef van Buuren,et al.  MICE: Multivariate Imputation by Chained Equations in R , 2011 .

[38]  S. Higgins,et al.  TRY – a global database of plant traits , 2011, Global Change Biology.

[39]  J. Morgan,et al.  Using plant functional traits to explain community composition across a strong environmental filter in Australian alpine snowpatches , 2011, Plant Ecology.

[40]  William N. Venables,et al.  Modern Applied Statistics with S , 2010 .

[41]  P. Reich,et al.  A global study of relationships between leaf traits, climate and soil measures of nutrient fertility , 2009 .

[42]  W. Thuiller,et al.  Predicting species distribution: offering more than simple habitat models. , 2005, Ecology letters.

[43]  Jane Elith,et al.  The evaluation strip: A new and robust method for plotting predicted responses from species distribution models , 2005 .

[44]  P. Reich,et al.  Assessing the generality of global leaf trait relationships. , 2005, The New phytologist.

[45]  S. Lavorel,et al.  Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail , 2002 .

[46]  L. Gough,et al.  Vascular plant species richness in Alaskan arctic tundra: the importance of soil pH , 2000 .

[47]  C. Wessman,et al.  Long-term studies of snow-vegetation interactions , 1993 .

[48]  S. Levin The problem of pattern and scale in ecology , 1992 .

[49]  Stefan Sperlich,et al.  Generalized Additive Models , 2014 .

[50]  Weather Roulette,et al.  Climate , 1858, The Sanitary Review and Journal of Public Health.

[51]  Miska Luoto,et al.  Earth surface processes drive the richness, composition and occurrence of plant species in an arctic–alpine environment , 2014 .

[52]  Miska Luoto,et al.  The meso-scale drivers of temperature extremes in high-latitude Fennoscandia , 2012, Climate Dynamics.

[53]  M. Westoby,et al.  ECOLOGICAL STRATEGIES : Some Leading Dimensions of Variation Between Species , 2002 .

[54]  Andrew D. Weiss Topographic position and landforms analysis , 2001 .

[55]  G. Ridgeway The State of Boosting ∗ , 1999 .

[56]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[57]  L. Ryvarden The vascular plants of the Rastigaissa area , 1969 .