An Extragradient-Based Alternating Direction Method for Convex Minimization
暂无分享,去创建一个
[1] R. Tibshirani,et al. Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.
[2] G. M. Korpelevich. The extragradient method for finding saddle points and other problems , 1976 .
[3] Yurii Nesterov,et al. Smooth minimization of non-smooth functions , 2005, Math. Program..
[4] Stephen P. Boyd,et al. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..
[5] Bingsheng He,et al. On the O(1/n) Convergence Rate of the Douglas-Rachford Alternating Direction Method , 2012, SIAM J. Numer. Anal..
[6] Pablo A. Parrilo,et al. Rank-Sparsity Incoherence for Matrix Decomposition , 2009, SIAM J. Optim..
[7] Jonathan Eckstein. Splitting methods for monotone operators with applications to parallel optimization , 1989 .
[8] Jieping Ye,et al. Large-scale sparse logistic regression , 2009, KDD.
[9] Damek Davis,et al. Convergence Rate Analysis of Several Splitting Schemes , 2014, 1406.4834.
[10] Shiqian Ma. Alternating Direction Method of Multipliers for Sparse Principal Component Analysis , 2011, Journal of the Operations Research Society of China.
[11] Victor Vianu,et al. Invited articles section foreword , 2010, JACM.
[12] Johan A. K. Suykens,et al. Application of a Smoothing Technique to Decomposition in Convex Optimization , 2008, IEEE Transactions on Automatic Control.
[13] Renato D. C. Monteiro,et al. On the Complexity of the Hybrid Proximal Extragradient Method for the Iterates and the Ergodic Mean , 2010, SIAM J. Optim..
[14] Xavier Bresson,et al. Bregmanized Nonlocal Regularization for Deconvolution and Sparse Reconstruction , 2010, SIAM J. Imaging Sci..
[15] Alexandre d'Aspremont,et al. Model Selection Through Sparse Max Likelihood Estimation Model Selection Through Sparse Maximum Likelihood Estimation for Multivariate Gaussian or Binary Data , 2022 .
[16] Xiaoming Yuan,et al. Alternating Direction Methods for Sparse Covariance Selection * , 2009 .
[17] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[18] Wotao Yin,et al. Alternating direction augmented Lagrangian methods for semidefinite programming , 2010, Math. Program. Comput..
[19] Dinh Quoc Tran,et al. Path-following gradient-based decomposition algorithms for separable convex optimization , 2012, J. Glob. Optim..
[20] P. Lions,et al. Splitting Algorithms for the Sum of Two Nonlinear Operators , 1979 .
[21] Renato D. C. Monteiro,et al. Complexity of Variants of Tseng's Modified F-B Splitting and Korpelevich's Methods for Hemivariational Inequalities with Applications to Saddle-point and Convex Optimization Problems , 2011, SIAM J. Optim..
[22] Peter Richtárik,et al. Parallel coordinate descent methods for big data optimization , 2012, Mathematical Programming.
[23] Marc Teboulle,et al. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..
[24] R. Tibshirani,et al. Sparsity and smoothness via the fused lasso , 2005 .
[25] Tong Zhang,et al. Accelerated proximal stochastic dual coordinate ascent for regularized loss minimization , 2013, Mathematical Programming.
[26] Yin Zhang,et al. Fixed-Point Continuation for l1-Minimization: Methodology and Convergence , 2008, SIAM J. Optim..
[27] Xiaoming Yuan,et al. Alternating Direction Method for Covariance Selection Models , 2011, Journal of Scientific Computing.
[28] Peter Richtárik,et al. Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function , 2011, Mathematical Programming.
[29] R. Glowinski,et al. Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics , 1987 .
[30] Renato D. C. Monteiro,et al. Iteration-Complexity of Block-Decomposition Algorithms and the Alternating Direction Method of Multipliers , 2013, SIAM J. Optim..
[31] H. H. Rachford,et al. On the numerical solution of heat conduction problems in two and three space variables , 1956 .
[32] Bingsheng He,et al. A new inexact alternating directions method for monotone variational inequalities , 2002, Math. Program..
[33] Junfeng Yang,et al. A New Alternating Minimization Algorithm for Total Variation Image Reconstruction , 2008, SIAM J. Imaging Sci..
[34] Arkadi Nemirovski,et al. Prox-Method with Rate of Convergence O(1/t) for Variational Inequalities with Lipschitz Continuous Monotone Operators and Smooth Convex-Concave Saddle Point Problems , 2004, SIAM J. Optim..
[35] Shiqian Ma,et al. Fixed point and Bregman iterative methods for matrix rank minimization , 2009, Math. Program..
[36] Dimitri P. Bertsekas,et al. On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..
[37] Junfeng Yang,et al. Linearized augmented Lagrangian and alternating direction methods for nuclear norm minimization , 2012, Math. Comput..
[38] M. Yuan,et al. Model selection and estimation in the Gaussian graphical model , 2007 .
[39] M. Solodov,et al. A Hybrid Approximate Extragradient – Proximal Point Algorithm Using the Enlargement of a Maximal Monotone Operator , 1999 .
[40] Michael A. Saunders,et al. Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..
[41] Taiji Suzuki. Stochastic Dual Coordinate Ascent with Alternating Direction Multiplier Method , 2013, 1311.0622.
[42] Junfeng Yang,et al. Alternating Direction Algorithms for 1-Problems in Compressive Sensing , 2009, SIAM J. Sci. Comput..
[43] Paulo J. S. Silva,et al. A practical relative error criterion for augmented Lagrangians , 2012, Mathematical Programming.
[44] Yi Ma,et al. Robust principal component analysis? , 2009, JACM.
[45] Tom Goldstein,et al. The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..
[46] Xiaoming Yuan,et al. Recovering Low-Rank and Sparse Components of Matrices from Incomplete and Noisy Observations , 2011, SIAM J. Optim..
[47] Xiang Gao,et al. On the Information-Adaptive Variants of the ADMM: An Iteration Complexity Perspective , 2017, Journal of Scientific Computing.
[48] D. Gabay. Applications of the method of multipliers to variational inequalities , 1983 .
[49] Valeria Ruggiero,et al. An alternating extragradient method for total variation-based image restoration from Poisson data , 2011 .
[50] H. H. Rachford,et al. The Numerical Solution of Parabolic and Elliptic Differential Equations , 1955 .
[51] Shiqian Ma,et al. Sparse Inverse Covariance Selection via Alternating Linearization Methods , 2010, NIPS.
[52] M. Fortin,et al. Augmented Lagrangian methods : applications to the numerical solution of boundary-value problems , 1983 .
[53] Tianyi Lin,et al. On the Convergence Rate of Multi-Block ADMM , 2014, 1408.4265.
[54] Xiaohui Xie,et al. Split Bregman method for large scale fused Lasso , 2010, Comput. Stat. Data Anal..
[55] M. Noor. New extragradient-type methods for general variational inequalities , 2003 .