An Extragradient-Based Alternating Direction Method for Convex Minimization

In this paper, we consider the problem of minimizing the sum of two convex functions subject to linear linking constraints. The classical alternating direction type methods usually assume that the two convex functions have relatively easy proximal mappings. However, many problems arising from statistics, image processing and other fields have the structure that while one of the two functions has an easy proximal mapping, the other function is smoothly convex but does not have an easy proximal mapping. Therefore, the classical alternating direction methods cannot be applied. To deal with the difficulty, we propose in this paper an alternating direction method based on extragradients. Under the assumption that the smooth function has a Lipschitz continuous gradient, we prove that the proposed method returns an $$\epsilon $$ϵ-optimal solution within $$O(1/\epsilon )$$O(1/ϵ) iterations. We apply the proposed method to solve a new statistical model called fused logistic regression. Our numerical experiments show that the proposed method performs very well when solving the test problems. We also test the performance of the proposed method through solving the lasso problem arising from statistics and compare the result with several existing efficient solvers for this problem; the results are very encouraging.

[1]  R. Tibshirani,et al.  Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.

[2]  G. M. Korpelevich The extragradient method for finding saddle points and other problems , 1976 .

[3]  Yurii Nesterov,et al.  Smooth minimization of non-smooth functions , 2005, Math. Program..

[4]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[5]  Bingsheng He,et al.  On the O(1/n) Convergence Rate of the Douglas-Rachford Alternating Direction Method , 2012, SIAM J. Numer. Anal..

[6]  Pablo A. Parrilo,et al.  Rank-Sparsity Incoherence for Matrix Decomposition , 2009, SIAM J. Optim..

[7]  Jonathan Eckstein Splitting methods for monotone operators with applications to parallel optimization , 1989 .

[8]  Jieping Ye,et al.  Large-scale sparse logistic regression , 2009, KDD.

[9]  Damek Davis,et al.  Convergence Rate Analysis of Several Splitting Schemes , 2014, 1406.4834.

[10]  Shiqian Ma Alternating Direction Method of Multipliers for Sparse Principal Component Analysis , 2011, Journal of the Operations Research Society of China.

[11]  Victor Vianu,et al.  Invited articles section foreword , 2010, JACM.

[12]  Johan A. K. Suykens,et al.  Application of a Smoothing Technique to Decomposition in Convex Optimization , 2008, IEEE Transactions on Automatic Control.

[13]  Renato D. C. Monteiro,et al.  On the Complexity of the Hybrid Proximal Extragradient Method for the Iterates and the Ergodic Mean , 2010, SIAM J. Optim..

[14]  Xavier Bresson,et al.  Bregmanized Nonlocal Regularization for Deconvolution and Sparse Reconstruction , 2010, SIAM J. Imaging Sci..

[15]  Alexandre d'Aspremont,et al.  Model Selection Through Sparse Max Likelihood Estimation Model Selection Through Sparse Maximum Likelihood Estimation for Multivariate Gaussian or Binary Data , 2022 .

[16]  Xiaoming Yuan,et al.  Alternating Direction Methods for Sparse Covariance Selection * , 2009 .

[17]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[18]  Wotao Yin,et al.  Alternating direction augmented Lagrangian methods for semidefinite programming , 2010, Math. Program. Comput..

[19]  Dinh Quoc Tran,et al.  Path-following gradient-based decomposition algorithms for separable convex optimization , 2012, J. Glob. Optim..

[20]  P. Lions,et al.  Splitting Algorithms for the Sum of Two Nonlinear Operators , 1979 .

[21]  Renato D. C. Monteiro,et al.  Complexity of Variants of Tseng's Modified F-B Splitting and Korpelevich's Methods for Hemivariational Inequalities with Applications to Saddle-point and Convex Optimization Problems , 2011, SIAM J. Optim..

[22]  Peter Richtárik,et al.  Parallel coordinate descent methods for big data optimization , 2012, Mathematical Programming.

[23]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[24]  R. Tibshirani,et al.  Sparsity and smoothness via the fused lasso , 2005 .

[25]  Tong Zhang,et al.  Accelerated proximal stochastic dual coordinate ascent for regularized loss minimization , 2013, Mathematical Programming.

[26]  Yin Zhang,et al.  Fixed-Point Continuation for l1-Minimization: Methodology and Convergence , 2008, SIAM J. Optim..

[27]  Xiaoming Yuan,et al.  Alternating Direction Method for Covariance Selection Models , 2011, Journal of Scientific Computing.

[28]  Peter Richtárik,et al.  Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function , 2011, Mathematical Programming.

[29]  R. Glowinski,et al.  Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics , 1987 .

[30]  Renato D. C. Monteiro,et al.  Iteration-Complexity of Block-Decomposition Algorithms and the Alternating Direction Method of Multipliers , 2013, SIAM J. Optim..

[31]  H. H. Rachford,et al.  On the numerical solution of heat conduction problems in two and three space variables , 1956 .

[32]  Bingsheng He,et al.  A new inexact alternating directions method for monotone variational inequalities , 2002, Math. Program..

[33]  Junfeng Yang,et al.  A New Alternating Minimization Algorithm for Total Variation Image Reconstruction , 2008, SIAM J. Imaging Sci..

[34]  Arkadi Nemirovski,et al.  Prox-Method with Rate of Convergence O(1/t) for Variational Inequalities with Lipschitz Continuous Monotone Operators and Smooth Convex-Concave Saddle Point Problems , 2004, SIAM J. Optim..

[35]  Shiqian Ma,et al.  Fixed point and Bregman iterative methods for matrix rank minimization , 2009, Math. Program..

[36]  Dimitri P. Bertsekas,et al.  On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..

[37]  Junfeng Yang,et al.  Linearized augmented Lagrangian and alternating direction methods for nuclear norm minimization , 2012, Math. Comput..

[38]  M. Yuan,et al.  Model selection and estimation in the Gaussian graphical model , 2007 .

[39]  M. Solodov,et al.  A Hybrid Approximate Extragradient – Proximal Point Algorithm Using the Enlargement of a Maximal Monotone Operator , 1999 .

[40]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[41]  Taiji Suzuki Stochastic Dual Coordinate Ascent with Alternating Direction Multiplier Method , 2013, 1311.0622.

[42]  Junfeng Yang,et al.  Alternating Direction Algorithms for 1-Problems in Compressive Sensing , 2009, SIAM J. Sci. Comput..

[43]  Paulo J. S. Silva,et al.  A practical relative error criterion for augmented Lagrangians , 2012, Mathematical Programming.

[44]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[45]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[46]  Xiaoming Yuan,et al.  Recovering Low-Rank and Sparse Components of Matrices from Incomplete and Noisy Observations , 2011, SIAM J. Optim..

[47]  Xiang Gao,et al.  On the Information-Adaptive Variants of the ADMM: An Iteration Complexity Perspective , 2017, Journal of Scientific Computing.

[48]  D. Gabay Applications of the method of multipliers to variational inequalities , 1983 .

[49]  Valeria Ruggiero,et al.  An alternating extragradient method for total variation-based image restoration from Poisson data , 2011 .

[50]  H. H. Rachford,et al.  The Numerical Solution of Parabolic and Elliptic Differential Equations , 1955 .

[51]  Shiqian Ma,et al.  Sparse Inverse Covariance Selection via Alternating Linearization Methods , 2010, NIPS.

[52]  M. Fortin,et al.  Augmented Lagrangian methods : applications to the numerical solution of boundary-value problems , 1983 .

[53]  Tianyi Lin,et al.  On the Convergence Rate of Multi-Block ADMM , 2014, 1408.4265.

[54]  Xiaohui Xie,et al.  Split Bregman method for large scale fused Lasso , 2010, Comput. Stat. Data Anal..

[55]  M. Noor New extragradient-type methods for general variational inequalities , 2003 .