Mesoscopic atomic entanglement for precision measurements beyond the standard quantum limit

Squeezing of quantum fluctuations by means of entanglement is a well-recognized goal in the field of quantum information science and precision measurements. In particular, squeezing the fluctuations via entanglement between 2-level atoms can improve the precision of sensing, clocks, metrology, and spectroscopy. Here, we demonstrate 3.4 dB of metrologically relevant squeezing and entanglement for ≳ 105 cold caesium atoms via a quantum nondemolition (QND) measurement on the atom clock levels. We show that there is an optimal degree of decoherence induced by the quantum measurement which maximizes the generated entanglement. A 2-color QND scheme used in this paper is shown to have a number of advantages for entanglement generation as compared with a single-color QND measurement.

[1]  A. Sørensen,et al.  Quantum interface between light and atomic ensembles , 2008, 0807.3358.

[2]  R. Namiki,et al.  Spin squeezing of a cold atomic ensemble with the nuclear spin of one-half. , 2008, Physical review letters.

[3]  P. Windpassinger,et al.  Echo spectroscopy of atomic dynamics in a Gaussian trap via phase imprints , 2008, 0807.0254.

[4]  Jun Ye,et al.  Spin squeezing in optical lattice clocks via lattice-based QND measurements , 2007, 0707.3834.

[5]  A S Sørensen,et al.  Stability of atomic clocks based on entangled atoms. , 2004, Physical review letters.

[6]  S. Deleglise,et al.  Progressive field-state collapse and quantum non-demolition photon counting , 2007, Nature.

[7]  Jun Ye,et al.  Quantum State Engineering and Precision Metrology Using State-Insensitive Light Traps , 2008, Science.

[8]  V. Sandberg,et al.  ON THE MEASUREMENT OF A WEAK CLASSICAL FORCE COUPLED TO A QUANTUM MECHANICAL OSCILLATOR. I. ISSUES OF PRINCIPLE , 1980 .

[9]  Jacob F. Sherson,et al.  QUANTUM INTERFACE BETWEEN LIGHT AND ATOMIC ENSEMBLES , 2008 .

[10]  C Langer,et al.  Hyperfine coherence in the presence of spontaneous photon scattering. , 2005, Physical review letters.

[11]  V. Vuletić,et al.  States of an ensemble of two-level atoms with reduced quantum uncertainty. , 2008, Physical review letters.

[12]  André Clairon,et al.  Quantum projection noise in an atomic fountain: a high stability cesium frequency standard , 1999 .

[13]  E. Polzik,et al.  Spin squeezed atoms: a macroscopic entangled ensemble created by light , 1999 .

[14]  P. Windpassinger,et al.  Inhomogeneous light shift effects on atomic quantum state evolution in non-destructive measurements , 2008, 0801.3242.

[15]  K. Gibble,et al.  A quantum scattering interferometer , 2007, Nature.

[16]  Wolfgang Tittel,et al.  Quantum-noise-limited interferometric measurement of atomic noise: Towards spin squeezing on the Cs clock transition , 2003 .

[17]  Jun Ye,et al.  Sr Lattice Clock at 1 × 10–16 Fractional Uncertainty by Remote Optical Evaluation with a Ca Clock , 2008, Science.

[18]  Probing number squeezing of ultracold atoms across the superfluid-Mott insulator transition. , 2005, Physical review letters.

[19]  C. F. Roos,et al.  ‘Designer atoms’ for quantum metrology , 2006, Nature.

[20]  A. Badolato,et al.  Observation of Faraday rotation from a single confined spin , 2006, quant-ph/0610110.

[21]  M. Saffman,et al.  Spin squeezing of atomic ensembles by multicolor quantum nondemolition measurements , 2009 .

[22]  Moore,et al.  Spin squeezing and reduced quantum noise in spectroscopy. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[23]  P. Zoller,et al.  Many-particle entanglement with Bose–Einstein condensates , 2000, Nature.

[24]  M. Oberthaler,et al.  Squeezing and entanglement in a Bose–Einstein condensate , 2008, Nature.

[25]  U Sterr,et al.  Optical clock with ultracold neutral atoms. , 2002, Physical review letters.

[26]  Klaus Mølmer,et al.  Entanglement and extreme spin squeezing. , 2000, Physical review letters.

[27]  J. Lodewyck,et al.  Nondestructive measurement of the transition probability in a Sr optical lattice clock , 2009, 0902.2905.

[28]  N. P. Bigelow,et al.  Atomic quantum non-demolition measurements and squeezing , 1998 .

[29]  Ueda,et al.  Squeezed spin states. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[30]  J. H. Müller,et al.  Nondestructive probing of Rabi oscillations on the cesium clock transition near the standard quantum limit. , 2008, Physical review letters.

[31]  A. Sørensen,et al.  Spin squeezing of atomic ensembles via nuclear-electronic spin entanglement. , 2008, Physical review letters.

[32]  M. Kasevich,et al.  Squeezed States in a Bose-Einstein Condensate , 2001, Science.

[33]  L. Mandel,et al.  Generation of spin squeezing via continuous quantum nondemolition measurement , 2000, Physical review letters.

[34]  D. Leibfried,et al.  Toward Heisenberg-Limited Spectroscopy with Multiparticle Entangled States , 2004, Science.