The next frontier for planetary and human exploration

The surface of Mars has been well mapped and characterized, yet the subsurface — the most likely place to find signs of extant or extinct life and a repository of useful resources for human exploration — remains unexplored. In the near future this is set to change.

K. Zacny | D. Breuer | K. L. Rogers | T. Spohn | R. Bhartia | M. S. Bell | M. Mischna | M. Malaska | R. Woolley | C. Edwards | T. Komarek | W. Brinckerhoff | V. Stamenković | B. Wilcox | J. Kirschvink | J. Mustard | P. Baglioni | G. Etiope | J. Blank | C. Edwards | K. Zacny | P. Baglioni | T. Spohn | W. Fischer | L. Beegle | R. Bhartia | L. Rothschild | F. Inagaki | A. Plesa | T. Onstott | N. Putzig | D. Glavin | J. Baross | M. Russell | B. Ménez | V. Orphan | H. Sapers | A. Kobayashi | J. Michalski | T. Komárek | D. Breuer | P. Boston | M. Malaska | M. Mischna | F. Inagaki | M. Burgin | J. Tarnas | V. Stamenković | D. Viola | W. Brinckerhoff | T. Komarek | L. Ward | A.-C. Plesa | R. Woolley | R. Grimm | D. Moser | V. Cormarkovic | G. Etiope | P. Baglioni | B. Wilcox | N. Barba | R. Woolley | J. Plaut | L. W. Beegle | D. D. Arumugam | N. Barba | J. Baross | M. S. Bell | J. G. Blank | P. J. Boston | M. S. Burgin | I. Cooper | V. Cormarkovic | A. Davila | R. M. Davis | W. W. Fischer | D. P. Glavin | R. E. Grimm | F. Inagaki | J. L. Kirschvink | A. Kobayashi | J. Michalski | B. Ménez | D. Moser | J. Mustard | T. C. Onstott | V. J. Orphan | M. R. Osburn | J. Plaut | N. Putzig | K. L. Rogers | L. Rothschild | M. Russell | H. Sapers | B. Sherwood Lollar | J. D. Tarnas | M. Tuite | D. Viola | L. M. Ward | M. Osburn | M. Tuite | L. M. Ward | M. Burgin | N. Putzig | A. Davila | D. Arumugam | I. Cooper | R. Davis | T. Onstott | M. R. Osburn | M. Russell | B. Sherwood Lollar | M. Tuite | B. S. Lollar | Doris Breuer

[1]  G. Slater,et al.  Deep fracture fluids isolated in the crust since the Precambrian era , 2013, Nature.

[2]  J. Grotzinger,et al.  The Sedimentary Rock Record of Mars: Distribution, Origins, and Global Stratigraphy , 2012 .

[3]  W. Farrell,et al.  Forming perchlorates on Mars through plasma chemistry during dust events , 2018, Earth and Planetary Science Letters.

[4]  Charles D. Edwards,et al.  Mars Small Spacecraft Studies: Overview , 2019, 2019 IEEE Aerospace Conference.

[5]  Jeffrey R. Johnson,et al.  Oxidation of manganese in an ancient aquifer, Kimberley formation, Gale crater, Mars , 2016 .

[6]  T. Spohn,et al.  How large are present‐day heat flux variations across the surface of Mars? , 2016 .

[7]  R. Bhartia,et al.  In situ Detection of Microbial Life in the Deep Biosphere in Igneous Ocean Crust , 2015, Front. Microbiol..

[8]  Samuel P. Kounaves,et al.  Identification of the perchlorate parent salts at the Phoenix Mars landing site and possible implications , 2014 .

[9]  F. Soldovieri,et al.  Radar evidence of subglacial liquid water on Mars , 2018, Science.

[10]  Gerhard Kminek,et al.  The effect of ionizing radiation on the preservation of amino acids on Mars , 2006 .

[11]  A. Yingst,et al.  A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars , 2014, Science.

[12]  Andrew Steele,et al.  Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the Curiosity rover investigations at Gale crater, Mars , 2015, Proceedings of the National Academy of Sciences.

[13]  James W. Head,et al.  Geologic history of Mars , 2010 .

[14]  D E Northup,et al.  Cave biosignature suites: microbes, minerals, and Mars. , 2001, Astrobiology.

[15]  Yoseph Bar-Cohen,et al.  Drilling and Excavation for Construction and In-Situ Resource Utilization , 2009 .

[16]  C. McKay,et al.  Background levels of methane in Mars’ atmosphere show strong seasonal variations , 2018, Science.

[17]  C P McKay,et al.  On the possibility of chemosynthetic ecosystems in subsurface habitats on Mars. , 1992, Icarus.

[18]  A. McEwen,et al.  Exposed subsurface ice sheets in the Martian mid-latitudes , 2018, Science.

[19]  David Mimoun,et al.  Evaluating the Wind-Induced Mechanical Noise on the InSight Seismometers , 2016, 1612.04308.

[20]  R. Grimm,et al.  A time–domain electromagnetic sounder for detection and characterization of groundwater on Mars , 2009 .

[21]  J. Holt,et al.  High Ice Purity of Martian Lobate Debris Aprons at the Regional Scale: Evidence From an Orbital Radar Sounding Survey in Deuteronilus and Protonilus Mensae , 2018, Geophysical Research Letters.

[22]  J. Worden,et al.  Methane on Mars and Habitability: Challenges and Responses , 2018, Astrobiology.

[23]  Giuseppe Etiope,et al.  Methane Seepage on Mars: Where to Look and Why , 2017, Astrobiology.

[24]  Andrew Steele,et al.  Organic matter preserved in 3-billion-year-old mudstones at Gale crater, Mars , 2018, Science.

[25]  Christopher T. Russell,et al.  Editorial on: Topical Collection on InSight Mission to Mars , 2017 .

[26]  J. Mustard,et al.  The Martian subsurface as a potential window into the origin of life , 2017, Nature Geoscience.

[27]  B. Jakosky,et al.  Mars’ atmospheric history derived from upper-atmosphere measurements of 38Ar/36Ar , 2017, Science.

[28]  T. Onstott,et al.  The contribution of the Precambrian continental lithosphere to global H2 production , 2014, Nature.

[29]  Vlada Stamenković,et al.  O2 solubility in Martian near-surface environments and implications for aerobic life , 2018, Nature Geoscience.

[30]  Yosuke Hoshino,et al.  Reappraisal of hydrocarbon biomarkers in Archean rocks , 2015, Proceedings of the National Academy of Sciences.

[31]  J. Morookian,et al.  A look back: The drilling campaign of the Curiosity rover during the Mars Science Laboratory's Prime Mission , 2019, Icarus.

[32]  J. Mustard,et al.  Radiolytic H2 production on Noachian Mars: Implications for habitability and atmospheric warming , 2018, Earth and Planetary Science Letters.

[33]  P. McGovern,et al.  Depth of the Martian cryosphere: Revised estimates and implications for the existence and detection of subpermafrost groundwater , 2010 .