Quantum Gravitational Non-Singular Tunneling Wavefunction Proposal

It was recently shown that tunneling wavefunction proposal is consistent with loop quantum geometry corrections including both holonomy and inverse scale factor corrections in the gravitational part of a spatially closed isotropic model with a positive cosmological constant. However, in presence of an inflationary potential the initial singularity is kinetic dominated and the effective minisuperspace potential again diverges at zero scale factor. Since the wavefunction in loop quantum cosmology cannot increase towards the zero scale factor, the tunneling wavefunction seems incompatible. We show that consistently including inverse scale factor modifications in scalar field Hamiltonian changes the effective potential into a barrier potential allowing the tunneling proposal. We also discuss a potential quantum instability of the cyclic universe resulting from tunneling.

[1]  Parampreet Singh,et al.  Tunneling wave function proposal with loop quantum geometry effects , 2022, Physical Review D.

[2]  T. Hertog,et al.  Cosmic eggs to relax the cosmological constant , 2021, Journal of Cosmology and Astroparticle Physics.

[3]  Suddhasattwa Brahma,et al.  On the Geometry of No-Boundary Instantons in Loop Quantum Cosmology , 2018, Universe.

[4]  Suddhasattwa Brahma,et al.  No-boundary wave function for loop quantum cosmology , 2018, Physical Review D.

[5]  A. Ashtekar,et al.  Generalized effective description of loop quantum cosmology , 2015, 1509.08899.

[6]  P. Diener,et al.  Numerical evolution of squeezed and non-Gaussian states in loop quantum cosmology , 2014, 1406.1486.

[7]  G. Torroba,et al.  Exploring eternal stability with the simple harmonic universe , 2014, 1405.0282.

[8]  A. Vilenkin,et al.  Instability of an emergent universe , 2014, 1403.0818.

[9]  P. Diener,et al.  Numerical simulations of a loop quantum cosmos: robustness of the quantum bounce and the validity of effective dynamics , 2014, 1402.6613.

[10]  Brajesh Gupt,et al.  Contrasting features of anisotropic loop quantum cosmologies: The role of spatial curvature , 2011, 1109.6636.

[11]  A. Vilenkin,et al.  Collapse of simple harmonic universe , 2011, 1110.4096.

[12]  S. Kachru,et al.  A simple harmonic universe , 2011, 1109.0282.

[13]  A. Ashtekar,et al.  Loop quantum cosmology: a status report , 2011, 1108.0893.

[14]  Alejandro Corichi,et al.  Coherent semiclassical states for loop quantum cosmology , 2011, 1105.5081.

[15]  V. Taveras Corrections to the Friedmann equations from loop quantum gravity for a universe with a free scalar field , 2008, 0807.3325.

[16]  J. Hartle,et al.  No-boundary measure of the universe. , 2007, Physical review letters.

[17]  A. Ashtekar,et al.  Robustness of key features of loop quantum cosmology , 2007, 0710.3565.

[18]  A. Ashtekar,et al.  Loop quantum cosmology of k = 1 FRW models , 2006, gr-qc/0612104.

[19]  A. Ashtekar,et al.  Quantum Nature of the Big Bang: Improved dynamics , 2006, gr-qc/0607039.

[20]  A. Ashtekar,et al.  Quantum nature of the big bang: An analytical and numerical investigation , 2006, gr-qc/0604013.

[21]  A. Ashtekar,et al.  Quantum nature of the big bang. , 2006, Physical review letters.

[22]  A. Guth,et al.  Inflationary spacetimes are incomplete in past directions. , 2003, Physical review letters.

[23]  S. Foster Scalar field cosmologies and the initial spacetime singularity , 1998, gr-qc/9806098.

[24]  Vilenkin,et al.  Did the Universe have a beginning? , 1992, Physical review. D, Particles and fields.

[25]  A. Vilenkin,et al.  Quantum cosmology and the initial state of the Universe. , 1988, Physical review. D, Particles and fields.

[26]  S. Hawking The Quantum State of the Universe , 1984 .

[27]  A. Vilenkin Quantum Creation of Universes , 1984 .

[28]  J. Hartle,et al.  Wave Function of the Universe , 1983 .

[29]  Alexander Vilenkin,et al.  Creation of Universes from Nothing , 1982 .

[30]  George F. R. Ellis,et al.  The Large Scale Structure of Space-Time , 2023 .

[31]  R. Penrose,et al.  The singularities of gravitational collapse and cosmology , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[32]  R. Geroch What is a singularity in general relativity , 1968 .