Barrier Trees on Poset-Valued Landscapes

Fitness landscapes have proved to be a valuable concept in evolutionary biology, combinatorial optimization, and the physics of disordered systems. Usually, a fitness landscape is considered as a mapping from a configuration space equipped with some notion of adjacency, nearness, distance, or accessibility, into the real numbers. In the context of multi-objective optimization problems this concept can be extended to poset-valued landscapes. In a geometric analysis of such a structure, local Pareto points take on the role of local minima. We show that the notion of saddle points, barriers, and basins can be extended to the poset-valued case in a meaningful way and describe an algorithm that efficiently extracts these features from an exhaustive enumeration of a given generalized landscape.

[1]  Pallab Dasgupta,et al.  Multiobjektive Heuristic Search in AND/OR Graphs , 1996, J. Algorithms.

[2]  Mark A. Miller,et al.  Archetypal energy landscapes , 1998, Nature.

[3]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[4]  K. Nemoto,et al.  Metastable states of the SK spin glass model , 1988 .

[5]  O. Catoni Simulated annealing algorithms and Markov chains with rare transitions , 1999 .

[6]  Brian A. Davey,et al.  Introduction to Lattices and Order: Preface to the second edition , 2002 .

[7]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[8]  M. Lagoudakis The 0 – 1 Knapsack Problem An Introductory Survey , 1996 .

[9]  G. Toulouse,et al.  Ultrametricity for physicists , 1986 .

[10]  Michael T. Wolfinger,et al.  Barrier Trees of Degenerate Landscapes , 2002 .

[11]  Pallab Dasgupta,et al.  Multiobjective Heuristic Search , 1999, Computational Intelligence.

[12]  Oren Etzioni,et al.  Efficient information gathering on the Internet , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[13]  P. Schuster,et al.  Analysis of RNA sequence structure maps by exhaustive enumeration I. Neutral networks , 1995 .

[14]  D. Sankoff,et al.  RNA secondary structures and their prediction , 1984 .

[15]  Gary B. Lamont,et al.  Multiobjective Evolutionary Algorithms: Analyzing the State-of-the-Art , 2000, Evolutionary Computation.

[16]  P. Schuster,et al.  RNA folding at elementary step resolution. , 1999, RNA.

[17]  Paolo Toth,et al.  Knapsack Problems: Algorithms and Computer Implementations , 1990 .

[18]  Carlos A. Coello Coello,et al.  An updated survey of GA-based multiobjective optimization techniques , 2000, CSUR.

[19]  Christian M. Reidys,et al.  Combinatorial Landscapes , 2002, SIAM Rev..

[20]  Xavier Gandibleux,et al.  An Annotated Bibliography of Multiobjective Combinatorial Optimization , 2000 .

[21]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[22]  P. Schuster,et al.  Analysis of RNA sequence structure maps by exhaustive enumeration II. Structures of neutral networks and shape space covering , 1996 .

[23]  J. Sabina,et al.  Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. , 1999, Journal of molecular biology.

[24]  Peter F. Stadler,et al.  RNA In Silico The Computational Biology of RNA Secondary Structures , 1999, Adv. Complex Syst..