Lattice-Boltzmann Method for Complex Flows

With its roots in kinetic theory and the cellular automaton concept, the lattice-Boltzmann (LB) equation can be used to obtain continuum flow quantities from simple and local update rules based on particle interactions. The simplicity of formulation and its versatility explain the rapid expansion of the LB method to applications in complex and multiscale flows. We review many significant developments over the past decade with specific examples. Some of the most active developments include the entropic LB method and the application of the LB method to turbulent flow, multiphase flow, and deformable particle and fiber suspensions. Hybrid methods based on the combination of the Eulerian lattice with a Lagrangian grid system for the simulation of moving deformable boundaries show promise for more efficient applications to a broader class of problems. We also discuss higherorder boundary conditions and the simulation of microchannel flow with finite Knudsen number. Additionally, the remarkable scalability of the LB method for parallel processing is shown with examples. Teraflop simulations with the LB method are routine, and there is no doubt that this method will be one of the first candidates for petaflop computational fluid dynamics in the near future.

[1]  Daniel H. Rothman,et al.  Immiscible cellular-automaton fluids , 1988 .

[2]  Shiyi Chen,et al.  A lattice Boltzmann model for multiphase fluid flows , 1993, comp-gas/9303001.

[3]  Cyrus K. Aidun,et al.  Parallel performance of a lattice-Boltzmann/finite element cellular blood flow solver on the IBM Blue Gene/P architecture , 2010, Comput. Phys. Commun..

[4]  Sauro Succi,et al.  Galilean-invariant lattice-Boltzmann models with H theorem. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  M. Junk,et al.  Asymptotic analysis of the lattice Boltzmann equation , 2005 .

[6]  R. Benzi,et al.  The lattice Boltzmann equation: theory and applications , 1992 .

[7]  P. Lallemand,et al.  Momentum transfer of a Boltzmann-lattice fluid with boundaries , 2001 .

[8]  Pierre Sagaut,et al.  A study of time correlations in lattice Boltzmann-based large-eddy simulation of isotropic turbulence , 2008 .

[9]  Dominique d'Humières,et al.  Multireflection boundary conditions for lattice Boltzmann models. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Shiyi Chen,et al.  A Novel Thermal Model for the Lattice Boltzmann Method in Incompressible Limit , 1998 .

[11]  Z. Feng,et al.  The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems , 2004 .

[12]  P. Coveney,et al.  Entropic lattice Boltzmann methods , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[13]  Hongwei Zheng,et al.  A lattice Boltzmann model for multiphase flows with large density ratio , 2006, J. Comput. Phys..

[14]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[15]  Guillaume Rannou,et al.  Lattice-Boltzmann method and immiscible two-phase flow , 2008 .

[16]  A. Ladd,et al.  Lattice-Boltzmann Simulations of Particle-Fluid Suspensions , 2001 .

[17]  Cass T. Miller,et al.  An evaluation of lattice Boltzmann schemes for porous medium flow simulation , 2006 .

[18]  Anna C Balazs,et al.  Newtonian fluid meets an elastic solid: coupling lattice Boltzmann and lattice-spring models. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  I. Ginzburg Equilibrium-type and link-type lattice Boltzmann models for generic advection and anisotropic-dispersion equation , 2005 .

[20]  Irina Ginzburg,et al.  Lattice Boltzmann modeling with discontinuous collision components: Hydrodynamic and Advection-Diffusion Equations , 2007 .

[21]  L. Biferale,et al.  Mesoscopic modelling of heterogeneous boundary conditions for microchannel flows , 2005, Journal of Fluid Mechanics.

[22]  Ulf D. Schiller,et al.  Statistical mechanics of the fluctuating lattice Boltzmann equation. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Tetsu Uesaka,et al.  Simulation of semidilute suspensions of non-Brownian fibers in shear flow. , 2008, The Journal of chemical physics.

[24]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[25]  Wen-An Yong,et al.  Weighted L2-Stability of the Lattice Boltzmann Method , 2009, SIAM J. Numer. Anal..

[26]  Cyrus K. Aidun,et al.  Lattice Boltzmann simulation of solid particles suspended in fluid , 1995 .

[27]  Taehun Lee,et al.  Rarefaction and compressibility effects of the lattice-Boltzmann-equation method in a gas microchannel. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Heinz Pitsch,et al.  Accuracy of higher-order lattice Boltzmann methods for microscale flows with finite Knudsen numbers , 2007, J. Comput. Phys..

[29]  M. Dupin,et al.  Modeling the flow of dense suspensions of deformable particles in three dimensions. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  M. Cates,et al.  Fluctuating lattice Boltzmann , 2004, cond-mat/0402598.

[31]  Harold Grad,et al.  Asymptotic Theory of the Boltzmann Equation , 1963 .

[32]  Linda Vahala,et al.  Entropic, LES and boundary conditions in lattice Boltzmann simulations of turbulence , 2009 .

[33]  Qinjun Kang,et al.  Displacement of a two-dimensional immiscible droplet in a channel , 2002 .

[34]  Cyrus K. Aidun,et al.  A method for direct simulation of flexible fiber suspensions using lattice Boltzmann equation with external boundary force , 2010 .

[35]  Shiyi Chen,et al.  A Lattice Boltzmann Subgrid Model for High Reynolds Number Flows , 1994, comp-gas/9401004.

[36]  Heinz Pitsch,et al.  Slip velocity and Knudsen layer in the lattice Boltzmann method for microscale flows. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  J. Abraham,et al.  A pressure-evolution-based multi-relaxation-time high-density-ratio two-phase lattice-Boltzmann model , 2007 .

[38]  Zanetti,et al.  Use of the Boltzmann equation to simulate lattice gas automata. , 1988, Physical review letters.

[39]  J. Stickel,et al.  FLUID MECHANICS AND RHEOLOGY OF DENSE SUSPENSIONS , 2001 .

[40]  Johan Meyers,et al.  On the model coefficients for the standard and the variational multi-scale Smagorinsky model , 2006, Journal of Fluid Mechanics.

[41]  Robert E. Street,et al.  Mathematical Methods In Kinetic Theory , 1970 .

[42]  W. Thomson,et al.  XXI. Stability of fluid motion (continued from the May and June numbers).—Rectilineal motion of viscous fluid between two parallel planes , 1887 .

[43]  A. Ladd Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation , 1993, Journal of Fluid Mechanics.

[44]  Alfonso Caiazzo,et al.  Boundary forces in lattice Boltzmann: Analysis of Momentum Exchange algorithm , 2008, Comput. Math. Appl..

[45]  Zhaoxia Yang,et al.  One-point boundary condition for the lattice Boltzmann method. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  Sauro Succi,et al.  Recent Advances in Lattice Boltzmann Computing , 1995 .

[47]  Kazuhiro Yamamoto,et al.  Simulation of Combustion Field with Lattice Boltzmann Method , 2002 .

[48]  Kazuhiro Yamamoto Lb Simulation on Combustion with Turbulence , 2003 .

[49]  Cyrus K. Aidun,et al.  The dynamics and scaling law for particles suspended in shear flow with inertia , 2000, Journal of Fluid Mechanics.

[50]  Ignacio Pagonabarraga,et al.  Lees–Edwards Boundary Conditions for Lattice Boltzmann , 2001 .

[51]  Raoyang Zhang,et al.  A Lattice Boltzmann Scheme for Incompressible Multiphase Flow and Its Application in Simulation of Rayleigh-Taylor Instability , 1998 .

[52]  I. Karlin,et al.  Kinetic boundary conditions in the lattice Boltzmann method. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[53]  Boyce E. Griffith,et al.  On the order of accuracy of the immersed boundary method: Higher order convergence rates for sufficiently smooth problems , 2005 .

[54]  C. Aidun,et al.  Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation , 1998, Journal of Fluid Mechanics.

[55]  Hudong Chen,et al.  A GENERAL MULTIPLE-RELAXATION-TIME BOLTZMANN COLLISION MODEL , 2007 .

[56]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases , 1939 .

[57]  Sangtae Kim,et al.  Microhydrodynamics: Principles and Selected Applications , 1991 .

[58]  John Abraham,et al.  Multiple-relaxation-time lattice-Boltzmann model for multiphase flow , 2005 .

[59]  T. Inamuro,et al.  A lattice Boltzmann method for incompressible two-phase flows with large density differences , 2004 .

[60]  Cyrus K. Aidun,et al.  Extension of the Lattice-Boltzmann Method for Direct Simulation of Suspended Particles Near Contact , 2003 .

[61]  Zhao-Yan Sun,et al.  Lattice Boltzmann study of hydrodynamic effects in lamellar ordering process of two-dimensional quenched block copolymers. , 2008, The Journal of chemical physics.

[62]  S. G. Mason,et al.  Particle motions in sheared suspensions: IX. Spin and deformation of threadlike particles , 1959 .

[63]  Raphael Aronson,et al.  Theory and application of the Boltzmann equation , 1976 .

[64]  Laura Schaefer,et al.  Equations of state in a lattice Boltzmann model , 2006 .

[65]  Zhaoli Guo,et al.  Physical symmetry, spatial accuracy, and relaxation time of the lattice boltzmann equation for microgas flows , 2006 .

[66]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[67]  Yan Peng,et al.  A lattice Boltzmann front-tracking method for interface dynamics with surface tension in two dimensions , 2007, J. Comput. Phys..

[68]  Wen-An Yong,et al.  Rigorous Navier–Stokes limit of the lattice Boltzmann equation , 2003 .

[69]  Massimo Bernaschi,et al.  MUPHY: A parallel MUlti PHYsics/scale code for high performance bio-fluidic simulations , 2009, Comput. Phys. Commun..

[70]  A. Wagner,et al.  Phase Separation under Shear in Two-dimensional Binary Fluids , 1999, cond-mat/9904033.

[71]  Theo G. Theofanous,et al.  The lattice Boltzmann equation method: theoretical interpretation, numerics and implications , 2003 .

[72]  Yeomans,et al.  Lattice Boltzmann simulations of liquid-gas and binary fluid systems. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[73]  Thomas J. Dougherty,et al.  A Mechanism for Non‐Newtonian Flow in Suspensions of Rigid Spheres , 1959 .

[74]  Dewei Qi,et al.  Lattice-Boltzmann simulations of particles in non-zero-Reynolds-number flows , 1999, Journal of Fluid Mechanics.

[75]  D. Hänel,et al.  Lattice-BGK Model for Low Mach Number Combustion , 1998 .

[76]  John Abraham,et al.  Lattice Boltzmann simulations of two-phase flow with high density ratio in axially symmetric geometry. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[77]  Sheng Chen,et al.  A simple lattice Boltzmann scheme for combustion simulation , 2008, Comput. Math. Appl..

[78]  Alejandro L. Garcia,et al.  Stabilization of thermal lattice Boltzmann models , 1995 .

[79]  Matthaeus,et al.  Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[80]  Sauro Succi,et al.  Lattice Kinetic Theory for Numerical Combustion , 1996, comp-gas/9609003.

[81]  A. Lamura,et al.  A lattice Boltzmann model of ternary fluid mixtures , 1995 .

[82]  Sauro Succi,et al.  Analytical calculation of slip flow in lattice Boltzmann models with kinetic boundary conditions , 2004 .

[83]  Axel Klar,et al.  A lattice Boltzmann method for immiscible multiphase flow simulations using the level set method , 2009, J. Comput. Phys..

[84]  Christopher M. Care,et al.  A lattice spring model of heterogeneous materials with plasticity , 2001 .

[85]  Shiyi Chen,et al.  LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .

[86]  Peter M. A. Sloot,et al.  Implementation Aspects of 3D Lattice-BGK: Boundaries, Accuracy, and a New Fast Relaxation Method , 1999 .

[87]  S. Succi,et al.  Lattice Boltzmann across scales: from turbulence to DNA translocation , 2008 .

[88]  S. Chen,et al.  Comparison of spectral method and lattice Boltzmann simulations of two‐dimensional hydrodynamics , 1993, comp-gas/9303003.

[89]  Linda Vahala,et al.  Entropic lattice Boltzmann representations required to recover Navier-Stokes flows. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[90]  Sauro Succi,et al.  Lattice Boltzmann Models with Mid-Range Interactions , 2007 .

[91]  Zhaoxia Yang,et al.  Convergence of lattice Boltzmann methods for Navier–Stokes flows in periodic and bounded domains , 2009, Numerische Mathematik.

[92]  I. Karlin,et al.  Stabilization of the lattice boltzmann method by the H theorem: A numerical test , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[93]  Timothy Nigel Phillips,et al.  Lattice Boltzmann model for simulating immiscible two-phase flows , 2007 .

[94]  A. Ladd,et al.  Accuracy and stability of a lattice-Boltzmann model with subgrid scale boundary conditions. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[95]  William R Blakeney,et al.  The viscosity of suspensions of straight, rigid rods , 1966 .

[96]  Shan,et al.  Lattice Boltzmann model for simulating flows with multiple phases and components. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[97]  G. Karniadakis,et al.  Microflows and Nanoflows: Fundamentals and Simulation , 2001 .

[98]  C. Tsallis,et al.  Nonextensive Entropy: Interdisciplinary Applications , 2004 .

[99]  J. Clausen,et al.  Simulating deformable particle suspensions using a coupled lattice-Boltzmann and finite-element method , 2009, Journal of Fluid Mechanics.

[100]  Y. Qian,et al.  Lattice BGK Models for Navier-Stokes Equation , 1992 .

[101]  Jonathan Chin,et al.  Lattice Boltzmann simulation of the flow of binary immiscible fluids with different viscosities using the Shan-Chen microscopic interaction model , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[102]  Yonghao Zhang,et al.  Lattice Boltzmann models for nonequilibrium gas flows. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[103]  Pandurang M Kulkarni,et al.  Suspension properties at finite Reynolds number from simulated shear flow , 2008 .

[104]  Nhan Phan-Thien,et al.  Viscosity of curved fibers in suspension , 2002 .

[105]  S. Orszag,et al.  Extended Boltzmann Kinetic Equation for Turbulent Flows , 2003, Science.

[106]  A. Ladd,et al.  Interpolated boundary condition for lattice Boltzmann simulations of flows in narrow gaps. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[107]  C. P. Lowe,et al.  Long-time tails in angular momentum correlations , 1995 .

[108]  Robert W Barber,et al.  Capturing Knudsen layer phenomena using a lattice Boltzmann model. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[109]  C. Lowe,et al.  Simulating solid colloidal particles using the lattice-Boltzmann method , 2000 .

[110]  Shiyi Chen,et al.  On the three-dimensional Rayleigh–Taylor instability , 1999 .

[111]  D. Rothman,et al.  Diffusion properties of gradient-based lattice Boltzmann models of immiscible fluids. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[112]  J. M. Yeomans,et al.  Dynamics of short polymer chains in solution , 2000 .

[113]  P. Lallemand,et al.  Lattice Boltzmann method for moving boundaries , 2003 .

[114]  J. Brady,et al.  Pressure-driven flow of suspensions: simulation and theory , 1994, Journal of Fluid Mechanics.

[115]  Julia M. Yeomans,et al.  A Lattice Boltzmann Model of Binary Fluid Mixture , 1995, comp-gas/9511001.

[116]  Victor Sofonea,et al.  Boundary conditions for the upwind finite difference Lattice Boltzmann model: Evidence of slip velocity in micro-channel flow , 2005 .

[117]  Ching-Long Lin,et al.  A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio , 2005 .

[118]  X. Yuan,et al.  Kinetic theory representation of hydrodynamics: a way beyond the Navier–Stokes equation , 2006, Journal of Fluid Mechanics.

[119]  S. Ansumali,et al.  Entropic lattice Boltzmann method for microflows , 2006 .

[120]  Alexandros Kalarakis,et al.  Galilean-invariant lattice-Boltzmann simulation of liquid-vapor interface dynamics. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[121]  P. Ahlrichs,et al.  Simulation of a single polymer chain in solution by combining lattice Boltzmann and molecular dynamics , 1999, cond-mat/9905183.

[122]  H. L. Dryden,et al.  Investigations on the Theory of the Brownian Movement , 1957 .

[123]  S Succi,et al.  Lattice Boltzmann models for nonideal fluids with arrested phase-separation. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[124]  Donald Ziegler,et al.  Boundary conditions for lattice Boltzmann simulations , 1993 .

[125]  H. C. Ottinger,et al.  Minimal entropic kinetic models for hydrodynamics , 2002, cond-mat/0205510.

[126]  Li-Shi Luo Comment on "Discrete Boltzmann equation for microfluidics". , 2004, Physical review letters.

[127]  Takaji Inamuro,et al.  A Galilean Invariant Model of the Lattice Boltzmann Method for Multiphase Fluid Flows Using Free-Energy Approach , 2000 .

[128]  Peter M. A. Sloot,et al.  Simulating Time Harmonic Flows with the Regularized L-BGK Method , 2007 .

[129]  Iliya V. Karlin,et al.  Perfect entropy functions of the Lattice Boltzmann method , 1999 .

[130]  G. Batchelor,et al.  The stress system in a suspension of force-free particles , 1970, Journal of Fluid Mechanics.

[131]  C. Aidun,et al.  Simulating 3D deformable particle suspensions using lattice Boltzmann method with discrete external boundary force , 2009 .

[132]  Qinjun Kang,et al.  Immiscible displacement in a channel: simulations of fingering in two dimensions , 2004 .

[133]  Carlo Cercignani,et al.  Variational approach to gas flows in microchannels , 2004 .

[134]  Wei Shyy,et al.  Force evaluation in the lattice Boltzmann method involving curved geometry. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[135]  Min Soe,et al.  Lattice Boltzmann Algorithms for Fluid Turbulence , 2007, 2007 DoD High Performance Computing Modernization Program Users Group Conference.

[136]  A. Ladd Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results , 1993, Journal of Fluid Mechanics.

[137]  Pierre Lallemand,et al.  Lattice Gas Hydrodynamics in Two and Three Dimensions , 1987, Complex Syst..

[138]  Kazuhiro Yamamoto,et al.  LB simulation on soot combustion in porous media , 2006 .

[139]  Dimitrios V. Rovas,et al.  An Improved Hydrodynamics Formulation for Multiphase Flow Lattice-Boltzmann Models , 1998 .

[140]  Dominique d'Humières,et al.  A lattice Boltzmann model for Jeffreys viscoelastic fluid , 1998 .

[141]  D. Wolf-Gladrow Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction , 2000 .

[142]  R. Jones,et al.  Image representation of a spherical particle near a hard wall , 1998 .

[143]  Shiyi Chen,et al.  Lattice-Boltzmann Simulations of Fluid Flows in MEMS , 1998, comp-gas/9806001.

[144]  A. Einstein Zur Theorie der Brownschen Bewegung , 1906 .

[145]  Michael C. Sukop,et al.  Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers , 2005 .

[146]  Sauro Succi,et al.  Mesoscopic modeling of slip motion at fluid-solid interfaces with heterogeneous catalysis. , 2002, Physical review letters.

[147]  R. G. Cox The motion of suspended particles almost in contact , 1974 .

[148]  J. Zhou Lattice Boltzmann Methods for Shallow Water Flows , 2003 .

[149]  P. Adler,et al.  Boundary flow condition analysis for the three-dimensional lattice Boltzmann model , 1994 .

[150]  J. R. Torczynski,et al.  A Lattice-Boltzmann Method for Partially Saturated Computational Cells , 1998 .

[151]  C. Cercignani The Boltzmann equation and its applications , 1988 .

[152]  G. Batchelor,et al.  The determination of the bulk stress in a suspension of spherical particles to order c2 , 1972, Journal of Fluid Mechanics.

[153]  D. J. Holdych,et al.  Lattice Boltzmann methods for diffuse and mobile interfaces , 2003 .

[154]  Burkhard Dünweg,et al.  Lattice Boltzmann Simulation of Polymer-Solvent Systems , 1998 .

[155]  S. Ansumali,et al.  Hydrodynamics beyond Navier-Stokes: exact solution to the lattice Boltzmann hierarchy. , 2007, Physical review letters.

[156]  Peter V. Coveney,et al.  Galilean-invariant multi-speed entropic lattice Boltzmann models , 2004 .

[157]  Sauro Succi,et al.  Lattice Boltzmann method at finite Knudsen numbers , 2005 .

[158]  O. Filippova,et al.  Boundary-Fitting and Local Grid Refinement for Lattice-BGK Models , 1998 .

[159]  Jeffrey F. Morris,et al.  Curvilinear flows of noncolloidal suspensions: The role of normal stresses , 1999 .

[160]  D. d'Humières,et al.  Thirteen-velocity three-dimensional lattice Boltzmann model. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[161]  S. Orszag,et al.  Expanded analogy between Boltzmann kinetic theory of fluids and turbulence , 2004, Journal of Fluid Mechanics.

[162]  David R. Noble,et al.  A consistent hydrodynamic boundary condition for the lattice Boltzmann method , 1995 .

[163]  Chang Shu,et al.  Application of lattice Boltzmann method to simulate microchannel flows , 2002 .

[164]  C. Meneveau,et al.  Decaying turbulence in an active-grid-generated flow and comparisons with large-eddy simulation , 2003, Journal of Fluid Mechanics.

[165]  Francis F. Chen,et al.  Introduction to Kinetic Theory , 1974 .

[166]  Bastien Chopard,et al.  Lattice Boltzmann method with regularized pre-collision distribution functions , 2006, Math. Comput. Simul..

[167]  S. Chapman,et al.  On the Law of Distribution of Molecular Velocities, and on the Theory of Viscosity and Thermal Conduction, in a Non-Uniform Simple Monatomic Gas , 1916 .

[168]  D. Levermore,et al.  A Knudsen layer theory for lattice gases , 1991 .

[169]  Jens Harting,et al.  Roughness induced boundary slip in microchannel flows. , 2007, Physical review letters.

[170]  J. Jiménez,et al.  Boltzmann Approach to Lattice Gas Simulations , 1989 .

[171]  François Golse,et al.  Kinetic equations and asympotic theory , 2000 .

[172]  Shan,et al.  Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[173]  S V Lishchuk,et al.  Lattice Boltzmann algorithm for surface tension with greatly reduced microcurrents. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[174]  S. Zaleski,et al.  Lattice Boltzmann model of immiscible fluids. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[175]  H. Grad Principles of the Kinetic Theory of Gases , 1958 .

[176]  Jeffrey Yepez,et al.  Entropic lattice Boltzmann model for Burgers's equation , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[177]  S V Lishchuk,et al.  Shear viscosity of bulk suspensions at low Reynolds number with the three-dimensional lattice Boltzmann method. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[178]  B. Cook,et al.  Three‐dimensional immersed boundary conditions for moving solids in the lattice‐Boltzmann method , 2007 .

[179]  Burkhard Dünweg,et al.  Computer simulations of the dynamics of polymer solutions , 2007 .

[180]  F. Toschi,et al.  Surface roughness-hydrophobicity coupling in microchannel and nanochannel flows. , 2006, Physical review letters.

[181]  Shiyi Chen,et al.  Lattice Boltzmann computations for reaction‐diffusion equations , 1993 .

[182]  I. Karlin,et al.  Entropy and Galilean invariance of lattice Boltzmann theories. , 2006, Physical review letters.

[183]  D. Klingenberg,et al.  Simulations of fiber flocculation: Effects of fiber properties and interfiber friction , 2000 .

[184]  Wei Shyy,et al.  On the Finite Difference-Based Lattice Boltzmann Method in Curvilinear Coordinates , 1998 .

[185]  R S Qin,et al.  Mesoscopic interparticle potentials in the lattice Boltzmann equation for multiphase fluids. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[186]  Shiyi Chen,et al.  Surface tension effects on two-dimensional two-phase Kelvin–Helmholtz instabilities , 2001 .

[187]  L. Bonilla,et al.  High-field limit of the Vlasov-Poisson-Fokker-Planck system: A comparison of different perturbation methods , 2000, cond-mat/0007164.

[188]  J. Eggels,et al.  Direct and large-eddy simulation of turbulent fluid flow using the lattice-Boltzmann scheme , 1996 .

[189]  F. Massaioli,et al.  Scaling and hydrodynamic effects in lamellar ordering , 2004, cond-mat/0404205.

[190]  J. Clausen,et al.  Galilean invariance in the lattice-Boltzmann method and its effect on the calculation of rheological properties in suspensions , 2009 .

[191]  Santosh Ansumali,et al.  Renormalization of the lattice Boltzmann hierarchy. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[192]  A. Ladd,et al.  Lubrication corrections for lattice-Boltzmann simulations of particle suspensions. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[193]  James Clerk Maxwell,et al.  IV. On the dynamical theory of gases , 1868, Philosophical Transactions of the Royal Society of London.

[194]  S. Edwards,et al.  The computer study of transport processes under extreme conditions , 1972 .

[195]  Carlo Cercignani,et al.  Mathematical Methods in Kinetic Theory , 1970 .

[196]  Dewei Qi,et al.  A new method for direct simulations of flexible filament suspensions in non‐zero Reynolds number flows , 2007 .

[197]  A. Ladd Sedimentation of homogeneous suspensions of non-Brownian spheres , 1997 .

[198]  J. Boon The Lattice Boltzmann Equation for Fluid Dynamics and Beyond , 2003 .

[199]  X. He,et al.  Discretization of the Velocity Space in the Solution of the Boltzmann Equation , 1997, comp-gas/9712001.

[200]  Kazuhiro Yamamoto,et al.  Combustion Simulation Using the Lattice Boltzmann Method , 2004 .

[201]  Pierre M. Adler,et al.  Surface tension models with different viscosities , 1995 .

[202]  Peter M. A. Sloot,et al.  Implementation aspects of 3d lattice-bgk: Boundaries, accuracy and a new fast relaxation method , 1999 .

[203]  Baoming Li,et al.  Mean-field free-energy approach to the lattice Boltzmann method for liquid-vapor and solid-fluid interfaces. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[204]  D. d'Humières,et al.  Multiple–relaxation–time lattice Boltzmann models in three dimensions , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[205]  Sauro Succi,et al.  Two-dimensional turbulence with the lattice Boltzmann equation , 1990 .

[206]  S Succi,et al.  Generalized lattice Boltzmann method with multirange pseudopotential. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[207]  Irina Ginzburg,et al.  A free-surface lattice Boltzmann method for modelling the filling of expanding cavities by Bingham fluids , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[208]  Sauro Succi,et al.  Kinetic theory of turbulence modeling: smallness parameter, scaling and microscopic derivation of Smagorinsky model , 2004 .