暂无分享,去创建一个
[1] János Pach,et al. Combinatorial Geometry , 2012 .
[2] József Beck,et al. Variations on a Game , 1982, J. Comb. Theory, Ser. A.
[3] Dénes König,et al. Theorie der endlichen und unendlichen Graphen : kombinatorische Topologie der Streckenkomplexe , 1935 .
[4] Dömötör Pálvölgyi,et al. Asymptotically Optimal Pairing Strategy for Tic-Tac-Toe with Numerous Directions , 2010, Electron. J. Comb..
[5] Gert Vegter,et al. In handbook of discrete and computational geometry , 1997 .
[6] Richard Pollack,et al. Upper bounds for configurations and polytopes inRd , 1986, Discret. Comput. Geom..
[7] Peter Robinson,et al. Drawability of Complete Graphs Using a Minimal Slope Set , 1994, Comput. J..
[8] Balázs Keszegh,et al. Drawing cubic graphs with at most five slopes , 2008, Comput. Geom..
[9] A. Tucker,et al. Coloring a Family of Circular Arcs , 1975 .
[10] Dimitrios M. Thilikos. Graph Theoretic Concepts in Computer Science - 36th International Workshop, WG 2010, Zarós, Crete, Greece, June 28-30, 2010 Revised Papers , 2010, WG.
[11] Subir Kumar Ghosh,et al. Visibility Algorithms in the Plane , 2007 .
[13] J. Pach,et al. Erdős-Hajnal-type Results on Intersection Patterns of Geometric Objects , 2008 .
[14] Thomas C. Shermer,et al. On representations of some thickness-two graphs , 1995, Comput. Geom..
[15] P. Giblin. Computational geometry: algorithms and applications (2nd edn.), by M. de Berg, M. van Kreveld, M. Overmars and O. Schwarzkopf. Pp. 367. £20.50. 2000. ISBN 3 540 65620 0 (Springer-Verlag). , 2001, The Mathematical Gazette.
[16] Endre Szemerédi,et al. A Combinatorial Distinction Between the Euclidean and Projective Planes , 1983, Eur. J. Comb..
[17] Csaba D. Tóth,et al. Graphs that admit right angle crossing drawings , 2010, Comput. Geom..
[18] Christina Koch,et al. Obstacle Numbers of Graphs , 2010, Discret. Comput. Geom..
[19] Brett Stevens,et al. A survey of known results and research areas for n-queens , 2009, Discret. Math..
[20] Michael Kaufmann,et al. On the Perspectives Opened by Right Angle Crossing Drawings , 2009, J. Graph Algorithms Appl..
[21] Eric Sundberg,et al. Potential-Based Strategies for Tic-Tac-Toe on the Integer Lattice with Numerous Directions , 2010, Electron. J. Comb..
[22] J. Beck. Combinatorial Games: Tic-Tac-Toe Theory , 2008 .
[23] Petra Mutzel,et al. The Thickness of Graphs: A Survey , 1998, Graphs Comb..
[24] János Pach,et al. Bounded-Degree Graphs can have Arbitrarily Large Slope Numbers , 2006, Electron. J. Comb..
[25] Markus Meringer,et al. Fast generation of regular graphs and construction of cages , 1999, J. Graph Theory.
[26] Mario Szegedy,et al. Geometric representation of cubic graphs with four directions , 2009, Comput. Geom..
[27] János Pach,et al. Lower Bounds on the Obstacle Number of Graphs , 2012, Electron. J. Comb..
[28] Jirí Matousek. Blocking Visibility for Points in General Position , 2009, Discret. Comput. Geom..
[29] Joseph O'Rourke,et al. Handbook of Discrete and Computational Geometry, Second Edition , 1997 .
[30] Jorge Urrutia,et al. Art Gallery and Illumination Problems , 2000, Handbook of Computational Geometry.
[31] János Pach,et al. Midpoints of segments induced by a point set , 2003 .
[32] Walter Didimo,et al. Drawing graphs with right angle crossings , 2009, Theor. Comput. Sci..
[33] János Pach,et al. Graphs with Large Obstacle Numbers , 2010, WG.
[34] S. Janson,et al. Wiley‐Interscience Series in Discrete Mathematics and Optimization , 2011 .
[35] L. Vietoris. Theorie der endlichen und unendlichen Graphen , 1937 .
[36] F. V. Petrov,et al. Partitions of nonzero elements of a finite field into pairs , 2010, 1005.1177.
[37] David R. Wood,et al. Really Straight Graph Drawings , 2004, GD.
[38] Mark de Berg,et al. Computational geometry: algorithms and applications , 1997 .
[39] Paul C. Kainen,et al. Thickness and coarseness of graphs , 1973 .
[40] Eric Sundberg,et al. A Pairing Strategy for Tic-Tac-Toe on the Integer Lattice with Numerous Directions , 2008, Electron. J. Comb..
[41] David R. Wood,et al. Blocking coloured point sets , 2010 .
[42] Endre Szemerédi,et al. Extremal problems in discrete geometry , 1983, Comb..
[43] János Barát,et al. A contribution to queens graphs: A substitution method , 2006, Discret. Math..
[44] David Eppstein,et al. Drawings of planar graphs with few slopes and segments , 2007, Comput. Geom..
[45] Emmanuel Preissmann,et al. Seating Couples Around the King's Table and a New Characterization of Prime Numbers , 2009, Am. Math. Mon..
[46] David Eppstein,et al. Journal of Graph Algorithms and Applications Geometric Thickness of Complete Graphs , 2022 .
[47] P. Erdös. Some remarks on the theory of graphs , 1947 .
[48] Deniz Sariöz,et al. Convex obstacle numbers of outerplanar graphs and bipartite permutation graphs , 2011, ArXiv.
[49] J. Schiff. Wiley‐Interscience Series in Discrete Mathematics and Optimization , 2011 .
[50] János Pach,et al. A note on blocking visibility between points , 2009 .
[51] David R. Wood,et al. Graph Treewidth and Geometric Thickness Parameters , 2005, GD.
[52] R. Pollack,et al. Allowable Sequences and Order Types in Discrete and Computational Geometry , 1993 .
[53] N. Alon. The number of polytopes, configurations and real matroids , 1986 .
[54] Balázs Keszegh,et al. Drawing Planar Graphs of Bounded Degree with Few Slopes , 2010, Graph Drawing.
[55] Noga Alon. Combinatorial Nullstellensatz , 1999, Combinatorics, Probability and Computing.
[56] D. Koenig. Theorie Der Endlichen Und Unendlichen Graphen , 1965 .
[57] Joseph O'Rourke,et al. Open Problems in the Combinatorics of Visibility and Illumination , 1998 .
[58] David Eppstein,et al. The geometric thickness of low degree graphs , 2003, SCG '04.
[59] Esther M. Arkin,et al. Arrangements of segments that share endpoints: Single face results , 1991, SCG '91.
[60] Jirí Matousek,et al. Bounded-Degree Graphs have Arbitrarily Large Geometric Thickness , 2006, Electron. J. Comb..
[61] Paul Erdös,et al. Ramsey-type theorems , 1989, Discret. Appl. Math..
[62] David Eppstein,et al. Separating Thickness from Geometric Thickness , 2002, GD.
[63] Jan Kratochvíl,et al. The Planar Slope Number of Planar Partial 3-Trees of Bounded Degree , 2013, Graphs Comb..