Obstacles, Slopes, and Tic-Tac-Toe: An excursion in discrete geometry and combinatorial game theory

A drawing of a graph is said to be a {\em straight-line drawing} if the vertices of $G$ are represented by distinct points in the plane and every edge is represented by a straight-line segment connecting the corresponding pair of vertices and not passing through any other vertex of $G$. The minimum number of slopes in a straight-line drawing of $G$ is called the slope number of $G$. We show that every cubic graph can be drawn in the plane with straight-line edges using only the four basic slopes $\{0,\pi/4,\pi/2,-\pi/4\}$. We also prove that four slopes have this property if and only if we can draw $K_4$ with them. Given a graph $G$, an {\em obstacle representation} of $G$ is a set of points in the plane representing the vertices of $G$, together with a set of obstacles (connected polygons) such that two vertices of $G$ are joined by an edge if and only if the corresponding points can be connected by a segment which avoids all obstacles. The {\em obstacle number} of $G$ is the minimum number of obstacles in an obstacle representation of $G$. We show that there are graphs on $n$ vertices with obstacle number $\Omega({n}/{\log n})$. We show that there is an $m=2n+o(n)$, such that, in the Maker-Breaker game played on $\Z^d$ where Maker needs to put at least $m$ of his marks consecutively in one of $n$ given winning directions, Breaker can force a draw using a pairing strategy. This improves the result of Kruczek and Sundberg who showed that such a pairing strategy exits if $m\ge 3n$. A simple argument shows that $m$ has to be at least $2n+1$ if Breaker is only allowed to use a pairing strategy, thus the main term of our bound is optimal.

[1]  János Pach,et al.  Combinatorial Geometry , 2012 .

[2]  József Beck,et al.  Variations on a Game , 1982, J. Comb. Theory, Ser. A.

[3]  Dénes König,et al.  Theorie der endlichen und unendlichen Graphen : kombinatorische Topologie der Streckenkomplexe , 1935 .

[4]  Dömötör Pálvölgyi,et al.  Asymptotically Optimal Pairing Strategy for Tic-Tac-Toe with Numerous Directions , 2010, Electron. J. Comb..

[5]  Gert Vegter,et al.  In handbook of discrete and computational geometry , 1997 .

[6]  Richard Pollack,et al.  Upper bounds for configurations and polytopes inRd , 1986, Discret. Comput. Geom..

[7]  Peter Robinson,et al.  Drawability of Complete Graphs Using a Minimal Slope Set , 1994, Comput. J..

[8]  Balázs Keszegh,et al.  Drawing cubic graphs with at most five slopes , 2008, Comput. Geom..

[9]  A. Tucker,et al.  Coloring a Family of Circular Arcs , 1975 .

[10]  Dimitrios M. Thilikos Graph Theoretic Concepts in Computer Science - 36th International Workshop, WG 2010, Zarós, Crete, Greece, June 28-30, 2010 Revised Papers , 2010, WG.

[11]  Subir Kumar Ghosh,et al.  Visibility Algorithms in the Plane , 2007 .

[13]  J. Pach,et al.  Erdős-Hajnal-type Results on Intersection Patterns of Geometric Objects , 2008 .

[14]  Thomas C. Shermer,et al.  On representations of some thickness-two graphs , 1995, Comput. Geom..

[15]  P. Giblin Computational geometry: algorithms and applications (2nd edn.), by M. de Berg, M. van Kreveld, M. Overmars and O. Schwarzkopf. Pp. 367. £20.50. 2000. ISBN 3 540 65620 0 (Springer-Verlag). , 2001, The Mathematical Gazette.

[16]  Endre Szemerédi,et al.  A Combinatorial Distinction Between the Euclidean and Projective Planes , 1983, Eur. J. Comb..

[17]  Csaba D. Tóth,et al.  Graphs that admit right angle crossing drawings , 2010, Comput. Geom..

[18]  Christina Koch,et al.  Obstacle Numbers of Graphs , 2010, Discret. Comput. Geom..

[19]  Brett Stevens,et al.  A survey of known results and research areas for n-queens , 2009, Discret. Math..

[20]  Michael Kaufmann,et al.  On the Perspectives Opened by Right Angle Crossing Drawings , 2009, J. Graph Algorithms Appl..

[21]  Eric Sundberg,et al.  Potential-Based Strategies for Tic-Tac-Toe on the Integer Lattice with Numerous Directions , 2010, Electron. J. Comb..

[22]  J. Beck Combinatorial Games: Tic-Tac-Toe Theory , 2008 .

[23]  Petra Mutzel,et al.  The Thickness of Graphs: A Survey , 1998, Graphs Comb..

[24]  János Pach,et al.  Bounded-Degree Graphs can have Arbitrarily Large Slope Numbers , 2006, Electron. J. Comb..

[25]  Markus Meringer,et al.  Fast generation of regular graphs and construction of cages , 1999, J. Graph Theory.

[26]  Mario Szegedy,et al.  Geometric representation of cubic graphs with four directions , 2009, Comput. Geom..

[27]  János Pach,et al.  Lower Bounds on the Obstacle Number of Graphs , 2012, Electron. J. Comb..

[28]  Jirí Matousek Blocking Visibility for Points in General Position , 2009, Discret. Comput. Geom..

[29]  Joseph O'Rourke,et al.  Handbook of Discrete and Computational Geometry, Second Edition , 1997 .

[30]  Jorge Urrutia,et al.  Art Gallery and Illumination Problems , 2000, Handbook of Computational Geometry.

[31]  János Pach,et al.  Midpoints of segments induced by a point set , 2003 .

[32]  Walter Didimo,et al.  Drawing graphs with right angle crossings , 2009, Theor. Comput. Sci..

[33]  János Pach,et al.  Graphs with Large Obstacle Numbers , 2010, WG.

[34]  S. Janson,et al.  Wiley‐Interscience Series in Discrete Mathematics and Optimization , 2011 .

[35]  L. Vietoris Theorie der endlichen und unendlichen Graphen , 1937 .

[36]  F. V. Petrov,et al.  Partitions of nonzero elements of a finite field into pairs , 2010, 1005.1177.

[37]  David R. Wood,et al.  Really Straight Graph Drawings , 2004, GD.

[38]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[39]  Paul C. Kainen,et al.  Thickness and coarseness of graphs , 1973 .

[40]  Eric Sundberg,et al.  A Pairing Strategy for Tic-Tac-Toe on the Integer Lattice with Numerous Directions , 2008, Electron. J. Comb..

[41]  David R. Wood,et al.  Blocking coloured point sets , 2010 .

[42]  Endre Szemerédi,et al.  Extremal problems in discrete geometry , 1983, Comb..

[43]  János Barát,et al.  A contribution to queens graphs: A substitution method , 2006, Discret. Math..

[44]  David Eppstein,et al.  Drawings of planar graphs with few slopes and segments , 2007, Comput. Geom..

[45]  Emmanuel Preissmann,et al.  Seating Couples Around the King's Table and a New Characterization of Prime Numbers , 2009, Am. Math. Mon..

[46]  David Eppstein,et al.  Journal of Graph Algorithms and Applications Geometric Thickness of Complete Graphs , 2022 .

[47]  P. Erdös Some remarks on the theory of graphs , 1947 .

[48]  Deniz Sariöz,et al.  Convex obstacle numbers of outerplanar graphs and bipartite permutation graphs , 2011, ArXiv.

[49]  J. Schiff Wiley‐Interscience Series in Discrete Mathematics and Optimization , 2011 .

[50]  János Pach,et al.  A note on blocking visibility between points , 2009 .

[51]  David R. Wood,et al.  Graph Treewidth and Geometric Thickness Parameters , 2005, GD.

[52]  R. Pollack,et al.  Allowable Sequences and Order Types in Discrete and Computational Geometry , 1993 .

[53]  N. Alon The number of polytopes, configurations and real matroids , 1986 .

[54]  Balázs Keszegh,et al.  Drawing Planar Graphs of Bounded Degree with Few Slopes , 2010, Graph Drawing.

[55]  Noga Alon Combinatorial Nullstellensatz , 1999, Combinatorics, Probability and Computing.

[56]  D. Koenig Theorie Der Endlichen Und Unendlichen Graphen , 1965 .

[57]  Joseph O'Rourke,et al.  Open Problems in the Combinatorics of Visibility and Illumination , 1998 .

[58]  David Eppstein,et al.  The geometric thickness of low degree graphs , 2003, SCG '04.

[59]  Esther M. Arkin,et al.  Arrangements of segments that share endpoints: Single face results , 1991, SCG '91.

[60]  Jirí Matousek,et al.  Bounded-Degree Graphs have Arbitrarily Large Geometric Thickness , 2006, Electron. J. Comb..

[61]  Paul Erdös,et al.  Ramsey-type theorems , 1989, Discret. Appl. Math..

[62]  David Eppstein,et al.  Separating Thickness from Geometric Thickness , 2002, GD.

[63]  Jan Kratochvíl,et al.  The Planar Slope Number of Planar Partial 3-Trees of Bounded Degree , 2013, Graphs Comb..