In-sample Contrastive Learning and Consistent Attention for Weakly Supervised Object Localization

Weakly supervised object localization (WSOL) aims to localize the target object using only the image-level supervision. Recent methods encourage the model to activate feature maps over the entire object by dropping the most discriminative parts. However, they are likely to induce excessive extension to the backgrounds which leads to over-estimated localization. In this paper, we consider the background as an important cue that guides the feature activation to cover the sophisticated object region and propose contrastive attention loss. The loss promotes similarity between foreground and its dropped version, and, dissimilarity between the dropped version and background. Furthermore, we propose foreground consistency loss that penalizes earlier layers producing noisy attention regarding the later layer as a reference to provide them with a sense of backgroundness. It guides the early layers to activate on objects rather than locally distinctive backgrounds so that their attentions to be similar to the later layer. For better optimizing the above losses, we use the non-local attention blocks to replace channel-pooled attention leading to enhanced attention maps considering the spatial similarity. Last but not least, we propose to drop background regions in addition to the most discriminative region. Our method achieves state-of-theart performance on CUB-200-2011 and ImageNet benchmark datasets regarding top-1 localization accuracy and MaxBoxAccV2, and we provide detailed analysis on our individual components. The code will be publicly available online for reproducibility.

[1]  Kaiming He,et al.  Momentum Contrast for Unsupervised Visual Representation Learning , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[2]  Bolei Zhou,et al.  Learning Deep Features for Discriminative Localization , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[3]  Changick Kim,et al.  Combinational Class Activation Maps for Weakly Supervised Object Localization , 2020, 2020 IEEE Winter Conference on Applications of Computer Vision (WACV).

[4]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[5]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  Meng Yang,et al.  Erasing Integrated Learning: A Simple Yet Effective Approach for Weakly Supervised Object Localization , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[7]  Michael Felsberg,et al.  Learning Fast and Robust Target Models for Video Object Segmentation , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[8]  Geoffrey E. Hinton,et al.  A Simple Framework for Contrastive Learning of Visual Representations , 2020, ICML.

[9]  Yunchao Wei,et al.  Self-Erasing Network for Integral Object Attention , 2018, NeurIPS.

[10]  Yann LeCun,et al.  Dimensionality Reduction by Learning an Invariant Mapping , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[11]  Marios Savvides,et al.  Feature Selective Anchor-Free Module for Single-Shot Object Detection , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[12]  Seong Joon Oh,et al.  Evaluating Weakly Supervised Object Localization Methods Right , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[13]  Rob Fergus,et al.  Visualizing and Understanding Convolutional Networks , 2013, ECCV.

[14]  Yao Zhao,et al.  Object Region Mining with Adversarial Erasing: A Simple Classification to Semantic Segmentation Approach , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[15]  Yi Yang,et al.  Self-produced Guidance for Weakly-supervised Object Localization , 2018, ECCV.

[16]  Sergey Ioffe,et al.  Rethinking the Inception Architecture for Computer Vision , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[17]  Abhinav Gupta,et al.  Non-local Neural Networks , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[18]  Pietro Perona,et al.  Caltech-UCSD Birds 200 , 2010 .

[19]  Hyunjung Shim,et al.  Attention-Based Dropout Layer for Weakly Supervised Object Localization , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[20]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[21]  Kaiqi Huang,et al.  Beyond Triplet Loss: A Deep Quadruplet Network for Person Re-identification , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[22]  Bohyung Han,et al.  Forget and Diversify: Regularized Refinement for Weakly Supervised Object Detection , 2018, ACCV.

[23]  Benjamin Recht,et al.  Do ImageNet Classifiers Generalize to ImageNet? , 2019, ICML.

[24]  Fuqiang Zhou,et al.  Fast Single Shot Instance Segmentation , 2018, ACCV.

[25]  Hyunjung Shim,et al.  PsyNet: Self-Supervised Approach to Object Localization Using Point Symmetric Transformation , 2020, AAAI.

[26]  Yi Yang,et al.  Adversarial Complementary Learning for Weakly Supervised Object Localization , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[27]  Youngjung Uh,et al.  Background Suppression Network for Weakly-supervised Temporal Action Localization , 2020, ArXiv.

[28]  Ling-Yu Duan,et al.  Towards Accurate One-Stage Object Detection With AP-Loss , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[29]  Xinlei Chen,et al.  TensorMask: A Foundation for Dense Object Segmentation , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[30]  Seong Joon Oh,et al.  CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[31]  Yong Jae Lee,et al.  Hide-and-Seek: Forcing a Network to be Meticulous for Weakly-Supervised Object and Action Localization , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).