Global Continuation via Higher-Gradient Regularization and Singular Limits in Forced One-Dimensional Phase Transitions

We consider a standard "higher-gradient" model for forced phase transitions in one-dimensional, shape-memory solids. We prescribe a parameter-dependent body forcing. The component of the potential energy corresponding to conventional elasticity is characterized by a nonconvex stored energy function of the strain. Our main goal is to show that global solution branches of the regularized problem converge to a global branch of weak solutions in the limit of vanishing "capillarity" (the coefficient of the higher-gradient term). The existence of global branches for the regularized, semilinear problem is routine, based upon the Leray--Schauder degree. In the physically meaningful case when the body force is everywhere nonnegative, we obtain uniform a priori bounds via a subtle maximum principle. This together with topological connectivity arguments yields the existence of global branches of weak solutions to the zero-capillarity problem. Moreover, by examining the singular limits of various supplementary conser...

[1]  I. Ekeland,et al.  Discontinuités de champs hamiltoniens et existence de solutions optimales en calcul des variations , 1977 .

[2]  H. Simpson,et al.  Global Continuation in Nonlinear Elasticity , 1998 .

[3]  R. Bellman Calculus of Variations (L. E. Elsgolc) , 1963 .

[4]  J. Ericksen,et al.  Equilibrium of bars , 1975 .

[5]  Nicolas Triantafyllidis,et al.  On higher order gradient continuum theories in 1-D nonlinear elasticity. Derivation from and comparison to the corresponding discrete models , 1993 .

[6]  Nonlinear eigenvalue problems for the whirling of heavy elastic strings, II: new methods of global bifurcation theory , 1983 .

[7]  Minimizing Sequences Selected via Singular Perturbations, and their Pattern Formation , 2000 .

[8]  Paul H. Rabinowitz,et al.  Some global results for nonlinear eigenvalue problems , 1971 .

[9]  G. Aubert,et al.  Théorèmes d'existence pour des problèmes du calcul des variations du type: Inf ∝øLf(x, u′(x)dx et Inf ∝øLf(x, u(x) u′(x))dx , 1979 .

[10]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[11]  T. Healey,et al.  Symmetry and nodal properties in the global bifurcation analysis of quasi-linear elliptic equations , 1991 .

[12]  H. Kielhöfer Multiple eigenvalue bifurcation for Fredholm operators. , 1985 .

[13]  J. Ball,et al.  Fine phase mixtures as minimizers of energy , 1987 .

[14]  Stefan Müller,et al.  Singular perturbations as a selection criterion for periodic minimizing sequences , 1993 .

[15]  Nicolas Triantafyllidis,et al.  A gradient approach to localization of deformation. I. Hyperelastic materials , 1986 .

[16]  L. Segel,et al.  Nonlinear aspects of the Cahn-Hilliard equation , 1984 .

[17]  Robert V. Kohn,et al.  Surface energy and microstructure in coherent phase transitions , 1994 .

[18]  Giovanni Colombo,et al.  On a classical problem of the calculus of variations without convexity assumptions , 1990 .

[19]  B. Dacorogna Direct methods in the calculus of variations , 1989 .

[20]  L. A. Li︠u︡sternik,et al.  Elements of Functional Analysis , 1962 .

[21]  On the singular limit for a class of problems modelling phase transitions , 1987 .

[22]  P. Rosakis Compact zones of shear transformation in an anisotropic solid , 1992 .

[23]  P. Rosakis,et al.  Unbounded Branches of Classical Injective Solutions to the Forced Displacement Problem in Nonlinear Elastostatics , 1997 .

[24]  S. Antman Nonlinear eigenvalue problems for the whirling of heavy elastic strings , 1980, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[25]  R. Ogden Non-Linear Elastic Deformations , 1984 .

[26]  J. Alexander A primer on connectivity , 1981 .

[27]  M. Crandall,et al.  Bifurcation from simple eigenvalues , 1971 .

[28]  M. Gurtin,et al.  Structured phase transitions on a finite interval , 1984 .

[29]  H. Kielhöfer Pattern formation of the stationary Cahn-Hilliard model , 1997, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.