Learning and Exploring Motor Skills with Spacetime Bounds

Equipping characters with diverse motor skills is the current bottleneck of physics‐based character animation. We propose a Deep Reinforcement Learning (DRL) framework that enables physics‐based characters to learn and explore motor skills from reference motions. The key insight is to use loose space‐time constraints, termed spacetime bounds, to limit the search space in an early termination fashion. As we only rely on the reference to specify loose spacetime bounds, our learning is more robust with respect to low quality references. Moreover, spacetime bounds are hard constraints that improve learning of challenging motion segments, which can be ignored by imitation‐only learning. We compare our method with state‐of‐the‐art tracking‐based DRL methods. We also show how to guide style exploration within the proposed framework.

[1]  LeeJehee,et al.  Learning predict-and-simulate policies from unorganized human motion data , 2019 .

[2]  C. K. Liu,et al.  Optimal feedback control for character animation using an abstract model , 2010, ACM Trans. Graph..

[3]  Jungdam Won,et al.  Learning body shape variation in physics-based characters , 2019, ACM Trans. Graph..

[4]  Sergey Levine,et al.  Continuous character control with low-dimensional embeddings , 2012, ACM Trans. Graph..

[5]  Jovan Popovic,et al.  Simulation of Human Motion Data using Short‐Horizon Model‐Predictive Control , 2008, Comput. Graph. Forum.

[6]  Libin Liu,et al.  Guided Learning of Control Graphs for Physics-Based Characters , 2016, ACM Trans. Graph..

[7]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[8]  Aaron Hertzmann,et al.  Style machines , 2000, SIGGRAPH 2000.

[9]  KangKang Yin,et al.  SIMBICON: simple biped locomotion control , 2007, ACM Trans. Graph..

[10]  Jovan Popović,et al.  Style translation for human motion , 2005, ACM Trans. Graph..

[11]  Jessica K. Hodgins,et al.  Realtime style transfer for unlabeled heterogeneous human motion , 2015, ACM Trans. Graph..

[12]  Zoran Popovic,et al.  Motion fields for interactive character locomotion , 2010, CACM.

[13]  Yuval Tassa,et al.  Continuous control with deep reinforcement learning , 2015, ICLR.

[14]  C. Karen Liu,et al.  Learning symmetric and low-energy locomotion , 2018, ACM Trans. Graph..

[15]  KangKang Yin,et al.  Towards Robust Direction Invariance in Character Animation , 2019, Comput. Graph. Forum.

[16]  Yuval Tassa,et al.  Emergence of Locomotion Behaviours in Rich Environments , 2017, ArXiv.

[17]  Nancy Argüelles,et al.  Author ' s , 2008 .

[18]  A. Einstein Relativity: The Special and the General Theory , 2015 .

[19]  Lucas Kovar,et al.  Motion Graphs , 2002, ACM Trans. Graph..

[20]  Sergey Levine,et al.  DeepMimic , 2018, ACM Trans. Graph..

[21]  George F. R. Ellis,et al.  The Large Scale Structure of Space-Time , 2023 .

[22]  Taku Komura,et al.  Mode-adaptive neural networks for quadruped motion control , 2018, ACM Trans. Graph..

[23]  M. V. D. Panne,et al.  Sampling-based contact-rich motion control , 2010, ACM Trans. Graph..

[24]  Jungdam Won,et al.  A scalable approach to control diverse behaviors for physically simulated characters , 2020, ACM Trans. Graph..

[25]  Sergey Levine,et al.  High-Dimensional Continuous Control Using Generalized Advantage Estimation , 2015, ICLR.

[26]  Daniel Cohen-Or,et al.  Emotion control of unstructured dance movements , 2017, Symposium on Computer Animation.

[27]  C. Karen Liu,et al.  Synthesis of complex dynamic character motion from simple animations , 2002, ACM Trans. Graph..

[28]  Taku Komura,et al.  Phase-functioned neural networks for character control , 2017, ACM Trans. Graph..

[29]  Jing Wang,et al.  MLLE: Modified Locally Linear Embedding Using Multiple Weights , 2006, NIPS.

[30]  Alec Radford,et al.  Proximal Policy Optimization Algorithms , 2017, ArXiv.

[31]  R. Penrose Techniques of Differential Topology in Relativity , 1972 .

[32]  Kenji Amaya,et al.  Emotion from Motion , 1996, Graphics Interface.

[33]  C. Karen Liu,et al.  Online control of simulated humanoids using particle belief propagation , 2015, ACM Trans. Graph..

[34]  C. Karen Liu,et al.  Stable Proportional-Derivative Controllers , 2011, IEEE Computer Graphics and Applications.

[35]  Taku Komura,et al.  A Deep Learning Framework for Character Motion Synthesis and Editing , 2016, ACM Trans. Graph..

[36]  Jitendra Malik,et al.  SFV , 2018, ACM Trans. Graph..

[37]  Libin Liu,et al.  Learning reduced-order feedback policies for motion skills , 2015, Symposium on Computer Animation.

[38]  Niloy J. Mitra,et al.  Spectral style transfer for human motion between independent actions , 2016, ACM Trans. Graph..

[39]  Jinxiang Chai,et al.  Synthesis and editing of personalized stylistic human motion , 2010, I3D '10.

[40]  David J. Fleet,et al.  Multifactor Gaussian process models for style-content separation , 2007, ICML '07.

[41]  Jessica K. Hodgins,et al.  Construction and optimal search of interpolated motion graphs , 2007, ACM Trans. Graph..

[42]  Michiel van de Panne,et al.  Diverse motion variations for physics-based character animation , 2013, SCA '13.

[43]  Aaron Hertzmann,et al.  Trajectory Optimization for Full-Body Movements with Complex Contacts , 2013, IEEE Transactions on Visualization and Computer Graphics.

[44]  Baining Guo,et al.  Improving Sampling‐based Motion Control , 2015, Comput. Graph. Forum.

[45]  Jessica K. Hodgins,et al.  Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces , 2004, ACM Trans. Graph..

[46]  Michiel van de Panne,et al.  ALLSTEPS: Curriculum‐driven Learning of Stepping Stone Skills , 2020, Comput. Graph. Forum.

[47]  Glen Berseth,et al.  DeepLoco , 2017, ACM Trans. Graph..

[48]  Yoonsang Lee,et al.  Data-driven biped control , 2010, ACM Trans. Graph..

[49]  C. Karen Liu,et al.  Synthesis of biologically realistic human motion using joint torque actuation , 2019, ACM Trans. Graph..

[50]  Michiel van de Panne,et al.  Task-based locomotion , 2016, ACM Trans. Graph..

[51]  Yong Cao,et al.  Style components , 2006, Graphics Interface.

[52]  M. van de Panne,et al.  Generalized biped walking control , 2010, ACM Trans. Graph..

[53]  F. Sebastian Grassia,et al.  Practical Parameterization of Rotations Using the Exponential Map , 1998, J. Graphics, GPU, & Game Tools.

[54]  David A. Forsyth,et al.  Generalizing motion edits with Gaussian processes , 2009, ACM Trans. Graph..

[55]  Dinesh K. Pai,et al.  Motion perturbation based on simple neuromotor control models , 2003, 11th Pacific Conference onComputer Graphics and Applications, 2003. Proceedings..