Dynamic Fracture of Ceramics in Armor Applications

Ceramic materials have been extensively used in armor applications for both personnel and vehicle protection. As the types of threats have diversified recently, e.g., improvised explosive devices and explosively formed projectiles, a proper set of ceramic material selection criteria is needed to design and optimize corresponding mitigating structures. However, the dynamic fracture and failure behavior of engineering ceramics is still not well understood. Using examples of thin ceramic plates and confined thick ceramics subjected to kinetic energy projectile impact, this article provides a brief summary on the current understanding of dynamic failure processes of ceramics under dynamic penetration loading conditions. Laboratory examination of dynamic fracture of ceramics is conducted using split Hopkinson bars with various loading rates, stress states, and loading histories.

[1]  M. J. Forrestal,et al.  A split Hopkinson pressure bar technique to determine compressive stress-strain data for rock materials , 2001 .

[2]  Arunachalam M. Rajendran,et al.  Modeling the impact behavior of AD85 ceramic under multiaxial loading , 1994 .

[3]  A. Rajendran,et al.  A Comprehensive Review of Modeling of Impact Damage in Ceramics , 1988 .

[4]  Sergey V Shkarayev,et al.  An inverse computational approach for the identification of the parameters of the constitutive model for damaged ceramics subjected to impact loading , 2005 .

[5]  R. Feng,et al.  Shock response of polycrystalline silicon carbide undergoing inelastic deformation , 1996 .

[6]  J. Asay,et al.  Reshock response of shock deformed aluminum , 2006 .

[7]  Weinong W Chen,et al.  Pulse shaping techniques for testing brittle materials with a split hopkinson pressure bar , 2002 .

[8]  B. Lawn,et al.  Indentation fracture: principles and applications , 1975 .

[9]  Donald A. Shockey,et al.  Failure phenomenology of confined ceramic targets and impacting rods , 1990 .

[10]  Weinong W. Chen Dynamic failure behavior of ceramics under multiaxial compression , 1995 .

[11]  John E. Field,et al.  Studies of contact damage in polycrystalline zinc sulphide , 1980 .

[12]  Huiyang Luo,et al.  Dynamic Compressive Testing of Intact and Damaged Ceramics , 2008 .

[13]  G. Ravichandran,et al.  Mechanical behaviour of a hot pressed aluminum nitride under uniaxial compression , 1998 .

[14]  Weinong W Chen,et al.  Dynamic compressive responses of intact and damaged ceramics from a single split Hopkinson pressure bar experiment , 2004 .

[15]  Krishnaswa Ravi-Chandar,et al.  Experimental Challenges in the Investigation of Dynamic Fracture of Brittle Materials , 2001 .

[16]  Sia Nemat-Nasser,et al.  Hopkinson techniques for dynamic recovery experiments , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[17]  Weinong W Chen,et al.  An experimental technique for imposing dynamic multiaxial-compression with mechanical confinement , 1996 .

[18]  Guruswami Ravichandran,et al.  A micromechanical model for high strain rate behavior of ceramics , 1995 .

[19]  Xin Sun,et al.  Modeling of Glass Fracture Damage Using Continuum Damage Mechanics - Static Spherical Indentation , 2004 .

[20]  J. Lankford The Role of Dynamic Material Properties in the Performance of Ceramic Armor , 2005 .

[21]  Weinong W Chen Electro-magnetic confinement for dynamic multiaxial compression experiments , 1999 .

[22]  Daniel Casem,et al.  A Four-Point Bend Technique to Determine Dynamic Fracture Toughness of Ceramics , 2006 .

[23]  H. Kolsky An Investigation of the Mechanical Properties of Materials at very High Rates of Loading , 1949 .

[24]  Ares J. Rosakis,et al.  Dynamic failure mechanics , 2000 .

[25]  R. Landingham,et al.  Final report of the light armor materials program. , 1972 .

[26]  J. Lankford Compressive strength and microplasticity in polycrystalline alumina , 1977 .

[27]  K. T. Ramesh,et al.  Direct Observation of the Dynamic Compressive Failure of a Transparent Polycrystalline Ceramic (AlON) , 2006 .

[28]  C. Scholz,et al.  Dilatancy in the fracture of crystalline rocks , 1966 .

[29]  R. R. Franzen,et al.  Penetration of confined aluminum nitride targets by tungsten long rods at 1.5–4.5 km/s , 1996 .

[30]  Michael F. Ashby,et al.  The damage mechanics of brittle solids in compression , 1990 .

[31]  G. R. Johnson,et al.  A generalized particle algorithm for high velocity impact computations , 2000 .

[32]  B. Lawn Indentation of Ceramics with Spheres: A Century after Hertz , 1998 .

[33]  M. L. Wilkins,et al.  FOURTH PROGRESS REPORT OF LIGHT ARMOR PROGRAM. , 1969 .

[34]  Sia Nemat-Nasser,et al.  Compression‐induced microcrack growth in brittle solids: Axial splitting and shear failure , 1985 .

[35]  S. Nemat-Nasser,et al.  Compression‐induced nonplanar crack extension with application to splitting, exfoliation, and rockburst , 1982 .

[36]  A. Rajendran,et al.  Dynamic Compressive Response of Damaged and Interlocked SiC–N Ceramics , 2006 .

[37]  Rodney J. Clifton,et al.  Response of materials under dynamic loading , 2000 .

[38]  Guruswami Ravichandran,et al.  Failure mode transition in ceramics under dynamic multiaxial compression , 2000 .

[39]  K. Ravi-Chandar,et al.  Dynamic Fracture of Nominally Brittle Materials , 1998 .

[40]  Michael Ortiz,et al.  A soft-recovery plate impact experiment for studying microcracking in ceramics , 1990 .

[41]  Joseph Sternberg,et al.  Material properties determining the resistance of ceramics to high velocity penetration , 1989 .

[42]  K. T. Ramesh,et al.  Dynamic strength and fragmentation of hot-pressed silicon carbide under uniaxial compression , 2004 .

[43]  Huiyang Luo,et al.  Dynamic Compressive Response of Intact and Damaged AD995 Alumina , 2005 .

[44]  G. Ravichandran,et al.  Static and Dynamic Compressive Behavior of Aluminum Nitride under Moderate Confinement , 2005 .

[45]  W. F. Brace,et al.  A note on brittle crack growth in compression , 1963 .

[46]  Bengt Lundberg,et al.  Impact of metallic projectiles on ceramic targets : transition between interface defeat and penetration , 2000 .

[47]  W. Böhme,et al.  The behavior of notched bend specimens in impact testing , 1982 .

[48]  J. Hagan Shear deformation under pyramidal indentations in soda-lime glass , 1980 .

[49]  Donald A. Shockey,et al.  The strength behavior of granulated silicon carbide at high strain rates and confining pressure , 1991 .

[50]  M. J. Normandia,et al.  Impact Response and Analysis of Several Silicon Carbides , 2005 .

[51]  K. T. Ramesh,et al.  High Rate Response and Dynamic Failure of Structural Ceramics , 2005 .

[52]  G. Hauver,et al.  Interface Defeat of Long-Rod Projectiles by Ceramic Armor , 2005 .

[53]  S. Nemat-Nasser,et al.  Uniaxial stress behaviour of Y-TZP , 1993, Journal of Materials Science.

[54]  C. Honodel,et al.  APPROACH TO THE STUDY OF LIGHT ARMOR. , 1967 .

[55]  J. Swab Recommendations for Determining the Hardness of Armor Ceramics , 2005 .

[56]  S. Nemat-Nasser,et al.  Dynamic compressive strength of silicon carbide under uniaxial compression , 2001 .

[57]  L. Meyer,et al.  Adiabatic shear failure under biaxial dynamic compression/ shear loading , 1994 .

[58]  G. Ravichandran,et al.  Dynamic compressive failure of a glass ceramic under lateral confinement , 1997 .