Comparative Study of Conjugate Gradient Coefficient for Unconstrained Optimization

Conjugate gradient methods are popular in the field of unconstrained optimization. Numerous studies have been devoted recently to improve this method. In this paper three of our new propose conjugate gradient coefficient (βk) have been compared with the six most common (βk) proposed by the early researches. The first proposed method is based from the reciprocal of the summation of the eigenvalues. The second and third proposed methods are based from the modification of the original Polak-Ribiere and Hestenes-Steifel. Numerical results have shown that, our new formula for (βk) performs far better than the original formula. It is also shown to possess global convergence properties.

[1]  Neculai Andrei,et al.  An Unconstrained Optimization Test Functions Collection , 2008 .

[2]  M. Al-Baali Descent Property and Global Convergence of the Fletcher—Reeves Method with Inexact Line Search , 1985 .

[3]  The Eigenstep Method: An Iterative Method for Unconstrained Quadratic Optimization , 2005 .

[4]  C. Storey,et al.  Efficient generalized conjugate gradient algorithms, part 1: Theory , 1991 .

[5]  Jinhua Guo,et al.  A new family of conjugate gradient methods , 2009 .

[6]  Zengxin Wei,et al.  New line search methods for unconstrained optimization , 2009 .

[7]  J. M. Martínez,et al.  A Spectral Conjugate Gradient Method for Unconstrained Optimization , 2001 .

[8]  Ya-Xiang Yuan,et al.  A Nonlinear Conjugate Gradient Method with a Strong Global Convergence Property , 1999, SIAM J. Optim..

[9]  M. Powell Nonconvex minimization calculations and the conjugate gradient method , 1984 .

[10]  N. Andrei Accelerated conjugate gradient algorithm with finite difference Hessian/vector product approximation for unconstrained optimization , 2009 .

[11]  T. M. Williams,et al.  Practical Methods of Optimization. Vol. 1: Unconstrained Optimization , 1980 .

[12]  Jiapu Zhang,et al.  Global Convergence of Conjugate Gradient Methods without Line Search , 2001, Ann. Oper. Res..

[13]  Ya-xiang,et al.  A NOTE ON THE NONLINEAR CONJUGATE GRADIENT METHOD , 2002 .

[14]  M. J. D. Powell,et al.  Restart procedures for the conjugate gradient method , 1977, Math. Program..

[15]  Ya-Xiang Yuan,et al.  Convergence Properties of Nonlinear Conjugate Gradient Methods , 1999, SIAM J. Optim..

[16]  Jorge Nocedal,et al.  Global Convergence Properties of Conjugate Gradient Methods for Optimization , 1992, SIAM J. Optim..

[17]  D. Touati-Ahmed,et al.  Efficient hybrid conjugate gradient techniques , 1990 .

[18]  C. M. Reeves,et al.  Function minimization by conjugate gradients , 1964, Comput. J..

[19]  Yuhong Dai Nonlinear Conjugate Gradient Methods , 2011 .