Polynomial Interrupt Timed Automata

Interrupt Timed Automata (ITA) form a subclass of stopwatch automata where reachability and some variants of timed model checking are decidable even in presence of parameters. They are well suited to model and analyze real-time operating systems. Here we extend ITA with polynomial guards and updates, leading to the class of polynomial ITA (polITA). We prove that reachability is decidable in 2EXPTIME on polITA, using an adaptation of the cylindrical decomposition method for the first-order theory of reals. Compared to previous approaches, our procedure handles parameters and clocks in a unified way. We also obtain decidability for the model checking of a timed version of CTL and for reachability in several extensions of polITA.

[1]  Serge Haddad,et al.  Interrupt Timed Automata: verification and expressiveness , 2012, Formal Methods Syst. Des..

[2]  D. S. Arnon,et al.  Algorithms in real algebraic geometry , 1988 .

[3]  A. Tarski A Decision Method for Elementary Algebra and Geometry , 2023 .

[4]  Amir Pnueli,et al.  Reachability Analysis of Dynamical Systems Having Piecewise-Constant Derivatives , 1995, Theor. Comput. Sci..

[5]  Rajeev Alur,et al.  Model-Checking in Dense Real-time , 1993, Inf. Comput..

[6]  Joseph Sifakis,et al.  Specification and verification of concurrent systems in CESAR , 1982, Symposium on Programming.

[7]  Serge Haddad,et al.  Interrupt Timed Automata , 2009, FoSSaCS.

[8]  Kim G. Larsen,et al.  The Impressive Power of Stopwatches , 2000, CONCUR.

[9]  Robert L. Grossman,et al.  Timed Automata , 1999, CAV.

[10]  Joseph Y. Halpern,et al.  Decision procedures and expressiveness in the temporal logic of branching time , 1982, STOC '82.

[11]  Éric Schost,et al.  Polar varieties and computation of one point in each connected component of a smooth real algebraic set , 2003, ISSAC '03.

[12]  Pravin Varaiya,et al.  What's decidable about hybrid automata? , 1995, STOC '95.

[13]  Leonard Berman,et al.  The Complexity of Logical Theories , 1980, Theor. Comput. Sci..

[14]  George E. Collins,et al.  Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .

[15]  Joseph S. Miller Decidability and Complexity Results for Timed Automata and Semi-linear Hybrid Automata , 2000, HSCC.

[16]  Markus Müller-Olm,et al.  Computing polynomial program invariants , 2004, Inf. Process. Lett..

[17]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[18]  P. Varaiya,et al.  What ' s Decidable about Hybrid Automata ? 1 , 1995 .

[19]  Thomas A. Henzinger,et al.  The Algorithmic Analysis of Hybrid Systems , 1995, Theor. Comput. Sci..

[20]  Thomas Brihaye,et al.  On O-Minimal Hybrid Systems , 2004, HSCC.

[21]  Daniel J. Miller Constructing o-minimal structures with decidable theories using generic families of functions from quasianalytic classes , 2010 .

[22]  George J. Pappas,et al.  Discrete abstractions of hybrid systems , 2000, Proceedings of the IEEE.

[23]  Serge Haddad,et al.  Parametric Interrupt Timed Automata , 2013, RP.

[24]  Mohab Safey El Din,et al.  Variant quantifier elimination , 2012, J. Symb. Comput..

[25]  John H. Reif,et al.  The complexity of elementary algebra and geometry , 1984, STOC '84.

[26]  Thomas A. Henzinger,et al.  Symbolic Model Checking for Real-Time Systems , 1994, Inf. Comput..