The humanization of N-glycosylation pathways in yeast

Yeast and other fungal protein-expression hosts have been extensively used to produce industrial enzymes, and are often the expression system of choice when manufacturing costs are of primary concern. However, for the production of therapeutic glycoproteins intended for use in humans, yeast have been less useful owing to their inability to modify proteins with human glycosylation structures. Yeast N-glycosylation is of the high-mannose type, which confers a short half-life in vivo and thereby compromises the efficacy of most therapeutic glycoproteins. Several approaches to humanizing yeast N-glycosylation pathways have been attempted over the past decade with limited success. Recently however, advances in the glycoengineering of yeast and the expression of therapeutic glycoproteins with humanized N-glycosylation structures have shown significant promise — this review summarizes the most important developments in the field.

[1]  A. Herscovics,et al.  Structure and function of Class I alpha 1,2-mannosidases involved in glycoprotein synthesis and endoplasmic reticulum quality control. , 2001, Biochimie.

[2]  R. B. Trimble,et al.  Glycoprotein synthesis in yeast. Early events in N-linked oligosaccharide processing in Schizosaccharomyces pombe. , 1994, The Journal of biological chemistry.

[3]  J. Brisson,et al.  Identification of the Carbohydrate Moieties and Glycosylation Motifs in Campylobacter jejuni Flagellin* , 2001, The Journal of Biological Chemistry.

[4]  M. Aebi,et al.  The dolichol pathway of N-linked glycosylation. , 1999, Biochimica et biophysica acta.

[5]  H. Pelham,et al.  The ERD2 gene determines the specificity of the luminal ER protein retention system , 1990, Cell.

[6]  E. Berger,et al.  Kin recognition between medial Golgi enzymes in HeLa cells. , 1994, The EMBO journal.

[7]  E. Berger,et al.  Expression of functional soluble forms of human beta-1, 4-galactosyltransferase I, alpha-2,6-sialyltransferase, and alpha-1, 3-fucosyltransferase VI in the methylotrophic yeast Pichia pastoris. , 2000, Biochemical and biophysical research communications.

[8]  Y. Jigami,et al.  Structure of the N-linked oligosaccharides that show the complete loss of alpha-1,6-polymannose outer chain from och1, och1 mnn1, and och1 mnn1 alg3 mutants of Saccharomyces cerevisiae. , 1993, The Journal of biological chemistry.

[9]  H. Ikenaga,et al.  Expression and characterization of rat UDP-N-acetylglucosamine: α-3-d-mannoside β-1,2-N-acetylglucosaminyltransferase I in Saccharomyces cerevisiae , 1999 .

[10]  Roland Contreras,et al.  In Vivo Synthesis of Mammalian-Like, Hybrid-Type N-Glycans in Pichia pastoris , 2004, Applied and Environmental Microbiology.

[11]  M. Gentzsch,et al.  Protein O-mannosylation. , 1999, Biochimica et biophysica acta.

[12]  S. Kornfeld,et al.  Assembly of asparagine-linked oligosaccharides. , 1985, Annual review of biochemistry.

[13]  Teresa Mitchell,et al.  Production of complex human glycoproteins in yeast. , 2003, Science.

[14]  S. Carr,et al.  The spectrum of N-linked oligosaccharide structures detected by enzymic microsequencing on a recombinant soluble CD4 glycoprotein from Chinese hamster ovary cells. , 1990, European journal of biochemistry.

[15]  R. B. Trimble,et al.  Overview of N- and O-linked oligosaccharide structures found in various yeast species. , 1999, Biochimica et biophysica acta.

[16]  C. Hollenberg,et al.  Application of yeasts in gene expression studies: a comparison of Saccharomyces cerevisiae, Hansenula polymorpha and Kluyveromyces lactis -- a review. , 1997, Gene.

[17]  E. Berger,et al.  The yeast expression system for recombinant glycosyltransferases , 1999, Glycoconjugate Journal.

[18]  Gary Walsh Biopharmaceutical benchmarks—2003 , 2003, Nature Biotechnology.

[19]  J. Ernst,et al.  Golgi Localization and in Vivo Activity of a Mammalian Glycosyltransferase (Human 1,4-Galactosyltransferase) in Yeast (*) , 1996, The Journal of Biological Chemistry.

[20]  Paul A. Gleeson,et al.  Targeting of proteins to the Golgi apparatus , 1998, Histochemistry and Cell Biology.

[21]  J. Gassenhuber,et al.  Cloning and characterization of the ALG3 gene of Saccharomyces cerevisiae. , 1996, Glycobiology.

[22]  R. Wind,et al.  High‐yield secretion of recombinant gelatins by Pichia pastoris , 1999, Yeast.

[23]  H. Ikenaga,et al.  Functional Evidence for UDP-galactose Transporter inSaccharomyces cerevisiae through the in Vivo Galactosylation and in Vitro Transport Assay* , 1998, The Journal of Biological Chemistry.

[24]  R. Davidson,et al.  Functional analysis of the ALG3 gene encoding the Dol-P-Man: Man5GlcNAc2-PP-Dol mannosyltransferase enzyme of P. pastoris. , 2004, Glycobiology.

[25]  Simon J North,et al.  N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. , 2002, Science.

[26]  H. Pelham,et al.  Sorting of soluble ER proteins in yeast. , 1988, The EMBO journal.

[27]  S. Kornfeld,et al.  Purification and characterization of a rat liver Golgi alpha-mannosidase capable of processing asparagine-linked oligosaccharides. , 1979, The Journal of biological chemistry.

[28]  Gary Walsh,et al.  Biopharmaceutical benchmarks , 2000, Nature Biotechnology.

[29]  P. Sudbery The expression of recombinant proteins in yeasts. , 1996, Current opinion in biotechnology.

[30]  Teresa Mitchell,et al.  Engineering of an artificial glycosylation pathway blocked in core oligosaccharide assembly in the yeast Pichia pastoris: production of complex humanized glycoproteins with terminal galactose. , 2004, Glycobiology.

[31]  William C. Raschke,et al.  Recent Advances in the Expression of Foreign Genes in Pichia pastoris , 1993, Bio/Technology.

[32]  L. Presta,et al.  Lack of Fucose on Human IgG1 N-Linked Oligosaccharide Improves Binding to Human FcγRIII and Antibody-dependent Cellular Toxicity* , 2002, The Journal of Biological Chemistry.

[33]  H. Pelham,et al.  Recycling of proteins from the Golgi compartment to the ER in yeast , 1990, The Journal of cell biology.

[34]  S. Munro,et al.  A C-terminal signal prevents secretion of luminal ER proteins , 1987, Cell.

[35]  M. Hilleman,et al.  Human hepatitis B vaccine from recombinant yeast , 1984, Nature.

[36]  L. Lehle,et al.  Biosynthesis of Lipid-Linked Oligosaccharides in Yeast: the ALG3 Gene Encodes the Dol-P-Man:Man5GlcNAc2-PP-Dol Mannosyltransferase , 2001, Biological chemistry.

[37]  Jan C. Semenza,et al.  ERD2, a yeast gene required for the receptor-mediated retrieval of luminal ER proteins from the secretory pathway , 1990, Cell.

[38]  P. Gleeson,et al.  Control of glycoprotein synthesis. , 1983, The Journal of biological chemistry.

[39]  P. Robbins,et al.  Isolation, characterization, and expression of cDNAs encoding murine alpha-mannosidase II, a Golgi enzyme that controls conversion of high mannose to complex N-glycans , 1991, The Journal of cell biology.

[40]  K. Nasmyth Eukaryotic gene cloning and expression in yeast , 1978, Nature.

[41]  J. Ernst,et al.  Golgi Localization in Yeast Is Mediated by the Membrane Anchor Region of Rat Liver Sialyltransferase (*) , 1995, The Journal of Biological Chemistry.

[42]  W. Hintz,et al.  Insertion intoAspergillus nidulans of functional UDP-GlcNAc: α3-d-mannoside β-1,2-N-acetylglucosaminyltransferase I, the enzyme catalysing the first committed step from oligomannose to hybrid and complex N-glycans , 1995, Glycoconjugate Journal.

[43]  H. Ikenaga,et al.  Production of Human Compatible High Mannose-type (Man5GlcNAc2) Sugar Chains inSaccharomyces cerevisiae* , 1998, The Journal of Biological Chemistry.

[44]  J. Cregg,et al.  Production of foreign proteins in the yeast Pichia pastoris , 1995 .

[45]  A. Herscovics,et al.  Importance of glycosidases in mammalian glycoprotein biosynthesis. , 1999, Biochimica et biophysica acta.

[46]  H. Schachter,et al.  Control of glycoprotein synthesis. Kinetic mechanism, substrate specificity, and inhibition characteristics of UDP-N-acetylglucosamine:alpha-D-mannoside beta 1-2 N-acetylglucosaminyltransferase II from rat liver. , 1987, The Journal of biological chemistry.

[47]  J. Paulson,et al.  Glycosyltransferases. Structure, localization, and control of cell type-specific glycosylation. , 1989, The Journal of biological chemistry.

[48]  C. Szymanski,et al.  Structure of the N-Linked Glycan Present on Multiple Glycoproteins in the Gram-negative Bacterium, Campylobacter jejuni * , 2002, The Journal of Biological Chemistry.

[49]  R. Teasdale,et al.  Intracellular sorting and transport of proteins. , 2003, Progress in biophysics and molecular biology.

[50]  PhD Frsc Harry Schachter MD The joys of HexNAc. The synthesis and function of N-andO-glycan branches , 2004, Glycoconjugate Journal.

[51]  C. Timossi,et al.  Impact of Carbohydrate Heterogeneity in Function of Follicle-Stimulating Hormone: Studies Derived from in Vitro and in Vivo Models1 , 2003, Biology of reproduction.

[52]  M. Gentzsch,et al.  Protein-O-glycosylation in yeast: protein-specific mannosyltransferases. , 1997, Glycobiology.

[53]  C. Szymanski,et al.  Evidence for a system of general protein glycosylation in Campylobacter jejuni , 1999, Molecular microbiology.

[54]  E. Berger,et al.  Human β1,4 galactosyltransferase and α2,6 sialyltransferase expressed in Saccharomyces cerevisiae are retained as active enzymes in the endoplasmic reticulum , 1994 .

[55]  Gary Walsh,et al.  Biopharmaceutical benchmarks—2003 , 2003, Nature Biotechnology.

[56]  R. Contreras,et al.  Use of HDEL‐tagged Trichoderma reesei mannosyl oligosaccharide 1,2‐α‐D‐mannosidase for N‐glycan engineering in Pichia pastoris , 2001, FEBS letters.

[57]  G. Gellissen,et al.  Methylotrophic yeast hansenula polymorpha as production organism for recombinant pharmaceuticals. , 1996, Arzneimittel-Forschung.

[58]  R. Bretthauer Genetic engineering of Pichia pastoris to humanize N-glycosylation of proteins. , 2003, Trends in biotechnology.

[59]  R. Contreras,et al.  Modification of the protein glycosylation pathway in the methylotrophic yeast Pichia pastoris , 1998, Biotechnology Letters.

[60]  P. Robbins,et al.  alpha-D-Mannosidases of rat liver Golgi membranes. Mannosidase II is the GlcNAcMAN5-cleaving enzyme in glycoprotein biosynthesis and mannosidases Ia and IB are the enzymes converting Man9 precursors to Man5 intermediates. , 1982, The Journal of biological chemistry.

[61]  Byung-Kwon Choi,et al.  Use of combinatorial genetic libraries to humanize N-linked glycosylation in the yeast Pichia pastoris , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[62]  F. Wieland,et al.  The secretory pathway: mechanisms of protein sorting and transport. , 1996, Biochimica et biophysica acta.

[63]  L. Lehle,et al.  Primary structural requirements for N- and O-glycosylation of yeast mannoproteins , 1984 .

[64]  M. Jackson,et al.  Signal-mediated sorting of membrane proteins between the endoplasmic reticulum and the golgi apparatus. , 1996, Annual review of cell and developmental biology.