Efficient fast learning automata

A new class of learning automata which are capable of supporting high-speed real-time applications is introduced. The proposed learning automata have a unique characteristic: they are capable of performing both probability updating and action selection with a computational complexity which is independent of the number of actions. Apart from their low computational complexity, the proposed automata are capable of achieving a high performance when operating in non-stationary stochastic environments.

[1]  B. John Oommen,et al.  String taxonomy using learning automata , 1997, IEEE Trans. Syst. Man Cybern. Part B.

[2]  Kumpati S. Narendra,et al.  Learning Automata - A Survey , 1974, IEEE Trans. Syst. Man Cybern..

[3]  Kaddour Najim,et al.  Learning automata and stochastic optimization , 1997 .

[4]  Mohammad S. Obaidat,et al.  Guest editorial learning automata: theory, paradigms, and applications , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[5]  Kaddour Najim,et al.  Learning Automata: Theory and Applications , 1994 .

[6]  Thomas E. Anderson,et al.  High speed switch scheduling for local area networks , 1992, ASPLOS V.

[7]  Mohammad S. Obaidat,et al.  Editorial Artificial Neural Networks To Systems, Man, And Cybernetics: Characteristics, Structures, And Applications , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[8]  Kumpati S. Narendra,et al.  Recent Developments in Learning Automata , 1986 .

[9]  Georgios I. Papadimitriou Hierarchical Discretized Pursuit Nonlinear Learning Automata with Rapid Convergence and High Accuracy , 1994, IEEE Trans. Knowl. Data Eng..

[10]  Georgios I. Papadimitriou,et al.  Learning automata-based receiver conflict avoidance algorithms for WDM broadcast-and-select star networks , 1996, TNET.

[11]  K. Najim,et al.  Optimization technique based on learning automata , 1990 .

[12]  B. John Oommen,et al.  Stochastic Automata Solutions to the Object Partitioning Problem , 1991, Comput. J..

[13]  B. John Oommen,et al.  Absorbing and Ergodic Discretized Two-Action Learning Automata , 1986, IEEE Trans. Syst. Man Cybern..

[14]  Alastair J. Walker,et al.  An Efficient Method for Generating Discrete Random Variables with General Distributions , 1977, TOMS.

[15]  K. S. Narenda,et al.  Adaptive and learning systems: Theory and applications , 2013, Autom..

[16]  Georgios I. Papadimitriou,et al.  WDM passive star networks: a learning automata-based architecture , 1996, Comput. Commun..

[17]  Georgios I. Papadimitriou A New Approach to the Design of Reinforcement Schemes for Learning Automata: Stochastic Estimator Learning Algorithms , 1994, IEEE Trans. Knowl. Data Eng..

[18]  Kumpati S. Narendra,et al.  On the Behavior of a Learning Automaton in a Changing Environment with Application to Telephone Traffic Routing , 1980, IEEE Transactions on Systems, Man, and Cybernetics.

[19]  B. John Oommen,et al.  A Fast Efficient Solution to the Capacity Assignment Problem Using Discretized Learning Automata , 1998, IEA/AIE.

[20]  Mohammad S. Obaidat,et al.  An efficient adaptive bus arbitration scheme for scalable shared-medium ATM switch , 2001, Comput. Commun..

[21]  G.I. Papadimitriou,et al.  Self-adaptive TDMA protocols for WDM star networks: a learning-automata-based approach , 1999, IEEE Photonics Technology Letters.

[22]  Georgios I. Papadimitriou,et al.  Self-adaptive random-access protocols for WDM passive star networks , 1995 .

[23]  Snehasis Mukhopadhyay,et al.  Associative learning of Boolean functions , 1989, IEEE Trans. Syst. Man Cybern..

[24]  B. John Oommen,et al.  Fast object partitioning using Stochastic learning automata , 1987, SIGIR '87.

[25]  Kumpati S. Narendra,et al.  Learning automata - an introduction , 1989 .