The yin and yang in the development of catalytic processes: catalysis research and reaction engineering.

For the implementation of commercial catalytic processes, catalyst development and reactor design and engineering need to go hand-in-hand. As both fields are mutually interdependent, a co-evolution of catalysts and chemical reactors has historically been the right path towards successful, large-scale technologies. Over the 150 years of its existence, the contributions of BASF to the development of several commercial catalytic processes constitute perfect illustrations of this necessary and synergetic interplay between catalyst science and reactor engineering.

[1]  Hans-Werner Schmidt,et al.  Detection of Catalytic Activity in Combinatorial Libraries of Heterogeneous Catalysts by IR Thermography. , 1998, Angewandte Chemie.

[2]  O. Trapp Durchsatzsteigerung von Trenntechniken durch "Multiplexing" , 2007 .

[3]  J. Suwalski,et al.  Thermally modified active carbon as a support for catalysts for NH3 synthesis , 1996 .

[4]  S. Boghosian,et al.  Molecular structure of supported molten salt catalysts for SO2 oxidation , 2003 .

[5]  D. Werner,et al.  Fe–MCM-41 as a Catalyst for Sulfur Dioxide Oxidation in Highly Concentrated Gases , 2000 .

[6]  F. J. Waller,et al.  Methanol technology developments for the new millennium , 2001 .

[7]  O. Trapp Boosting the throughput of separation techniques by "multiplexing". , 2007, Angewandte Chemie.

[8]  J. Grunwaldt,et al.  High-throughput screening under demanding conditions: Cu/ZnO catalysts in high pressure methanol synthesis as an example , 2003 .

[9]  K. Aika,et al.  Ammonia Synthesis over Non-Iron Catalysts and Related Phenomena , 1995 .

[10]  A. Hiroki,et al.  Decomposition of hydrogen peroxide at water-ceramic oxide interfaces. , 2005, The journal of physical chemistry. B.

[11]  T. Tatsumi,et al.  Synthesis and application of colloidal nanocrystals of the MFI-type zeolites. , 2011, Journal of colloid and interface science.

[12]  R. Sanz,et al.  Turning TS-1 zeolite into a highly active catalyst for olefin epoxidation with organic hydroperoxides. , 2009, Chemical communications.

[13]  W. H. Weinberg,et al.  High-Throughput Synthesis and Screening of Combinatorial Heterogeneous Catalyst Libraries. , 1999, Angewandte Chemie.

[14]  M. Muhler,et al.  Der Ammoniakkatalysator der nächsten Generation: Barium‐promotiertes Ruthenium auf oxidischen Trägern , 2001 .

[15]  Reza Sadeghbeigi,et al.  Fluid Catalytic Cracking Handbook: An Expert Guide to the Practical Operation, Design, and Optimization of FCC Units , 2000 .

[16]  R. Schlögl,et al.  Knowledge-based development of a nitrate-free synthesis route for Cu/ZnO methanol synthesis catalysts via formate precursors. , 2011, Chemical communications.

[17]  R. Shinnar,et al.  Development of catalytic cracking technology. A lesson in chemical reactor design , 1990 .

[18]  R. Schlögl,et al.  Katalytische Ammoniaksynthese - eine "unendliche Geschichte"? , 2003 .

[19]  K. P. Jong,et al.  Towards ‘greener’ catalyst manufacture: Reduction of wastewater from the preparation of Cu/ZnO/Al2O3 methanol synthesis catalysts , 2013 .

[20]  Wilhelm F. Maier,et al.  Erkennung der Selektivität von Oxidationsreaktionen auf Katalysatorbibliotheken durch ortsaufgelöste Massenspektrometrie , 1999 .

[21]  R. Schlögl,et al.  Über die Realstruktur von “Ammoniakeisen” und ihre Stabilität während des Haber‐Bosch‐Verfahrens , 2013 .

[22]  Ferdi Schüth,et al.  Handbook of Heterogeneous Catalysis. 2nd Edition , 2008 .

[23]  Kyungsu Na,et al.  MFI Titanosilicate Nanosheets with Single-Unit-Cell Thickness as an Oxidation Catalyst Using Peroxides , 2011 .

[24]  T. Akita,et al.  Propene epoxidation with dioxygen catalyzed by gold clusters. , 2009, Angewandte Chemie.

[25]  J. W. Elam,et al.  Increased Silver Activity for Direct Propylene Epoxidation via Subnanometer Size Effects , 2010, Science.

[26]  Hoffmann,et al.  Parallel Synthesis and Testing of Catalysts under Nearly Conventional Testing Conditions. , 1999, Angewandte Chemie.

[27]  F. Haber,et al.  Über die Bildung von Ammoniak den Elementen , 1905 .

[28]  J. Maessen,et al.  The mechanism and the kinetics of sulfur dioxide oxidation on catalysts containing vanadium and alkali oxides , 1968 .

[29]  S. Dahl,et al.  Dissociative adsorption of N2 on ru(0001): A surface reaction totally dominated by steps , 2000 .

[30]  H. Hosono,et al.  Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. , 2012, Nature chemistry.

[31]  U. Müller,et al.  Ammonium-Based Alkaline-Free Synthesis of MFI-Type Boron- and Titanium Zeolites , 1994 .

[32]  Hideo Hosono,et al.  High-Density Electron Anions in a Nanoporous Single Crystal: [Ca24Al28O64]4+(4e-) , 2003, Science.

[33]  G. Ertl Reactions at surfaces: from atoms to complexity (Nobel Lecture). , 2008, Angewandte Chemie.

[34]  W. Maier,et al.  High-throughput technology for novel SO2 oxidation catalysts , 2011, Science and technology of advanced materials.

[35]  Freek Kapteijn,et al.  Catalyst deactivation: is it predictable?: What to do? , 2001 .

[37]  Saul Bellow,et al.  Nobel Lecture , 2018, Green Planet Blues.

[38]  F. Schüth,et al.  Correlations between synthesis, precursor, and catalyst structure and activity of a large set of CuO/ZnO/Al2O3 catalysts for methanol synthesis , 2008 .

[39]  W. Grunert,et al.  Handbook of Heterogeneous Catalysis, Vol. 1–5. , 1999 .

[40]  M. Serio,et al.  Chemical and Technical Aspects of Propene Oxide Production via Hydrogen Peroxide (HPPO Process) , 2013 .

[41]  Byeongdu Lee,et al.  Selective propene epoxidation on immobilized au(6-10) clusters: the effect of hydrogen and water on activity and selectivity. , 2009, Angewandte Chemie.

[42]  W. Maier,et al.  Search for new catalysts for the oxidation of SO₂. , 2013, ACS combinatorial science.

[43]  M. Crocker,et al.  Propylene epoxidation over titanium-on-silica catalyst—the heart of the SMPO process , 2004 .

[44]  Howard Turner,et al.  Kombinatorische Parallelsynthese und Hochgeschwindigkeitsrasterung von Heterogenkatalysator‐Bibliotheken , 1999 .

[45]  J. Grunwaldt,et al.  Quasi-homogeneous methanol synthesis over highly active copper nanoparticles. , 2005, Angewandte Chemie.

[46]  K. C. Waugh,et al.  Synthesis of Methanol , 1988 .

[47]  Ferdi Schüth,et al.  A Multipurpose Parallelized 49-Channel Reactor for the Screening of Catalysts: Methane Oxidation as the Example Reaction , 2001 .

[48]  Olaf Hinrichsen,et al.  Kinetic simulation of ammonia synthesis catalyzed by ruthenium , 1999 .

[49]  B. Weckhuysen,et al.  Catalytic activity in individual cracking catalyst particles imaged throughout different life stages by selective staining. , 2011, Nature chemistry.

[50]  Robert Schlögl,et al.  The Haber-Bosch process revisited: on the real structure and stability of "ammonia iron" under working conditions. , 2013, Angewandte Chemie.

[51]  J. Nørskov,et al.  Towards the computational design of solid catalysts. , 2009, Nature chemistry.

[52]  Kunhao Li,et al.  A mesostructured Y zeolite as a superior FCC catalyst--lab to refinery. , 2012, Chemical communications.

[53]  N. Tsubaki,et al.  Preparation, structure and performance of TS-1 zeolite-coated Au–Pd/TiO2–SiO2 capsule catalyst for propylene epoxidation with oxygen and hydrogen , 2011 .

[54]  Yulong Wu,et al.  Deactivation and regeneration of titanium silicalite catalyst for epoxidation of propylene , 2007 .

[55]  J. Nørskov,et al.  The Active Site of Methanol Synthesis over Cu/ZnO/Al2O3 Industrial Catalysts , 2012, Science.

[56]  Wilhelm F. Maier,et al.  IR‐thermographische Erkennung katalytischer Aktivität in kombinatorischen Bibliotheken heterogener Katalysatoren , 1998 .

[57]  M. Farle,et al.  Stearate‐Based Cu Colloids in Methanol Synthesis: Structural Changes Driven by Strong Metal–Support Interactions , 2010 .

[58]  Robert Schlögl,et al.  Catalytic synthesis of ammonia-a "never-ending story"? , 2003, Angewandte Chemie.

[59]  Le Xu,et al.  Core/shell-structured TS-1@mesoporous silica-supported Au nanoparticles for selective epoxidation of propylene with H2 and O2 , 2011 .

[60]  Robert Schlögl,et al.  Role of lattice strain and defects in copper particles on the activity of Cu/ZnO/Al(2)O(3) catalysts for methanol synthesis. , 2007, Angewandte Chemie.

[61]  Yihui Liu,et al.  Epoxidation of propylene using supported titanium silicalite catalysts , 2002 .

[62]  R. Von Burg,et al.  Methanol , 1925, Journal of applied toxicology : JAT.

[63]  A K Rhodes NEW AMMONIA PROCESS, CATALYST PROVEN IN CANADIAN PLANT , 1996 .

[64]  F. Schüth,et al.  Imaging reflection IR spectroscopy as a tool to achieve higher integration for high-throughput experimentation in catalysis research. , 2004, Journal of combinatorial chemistry.

[65]  R. Knietsch,et al.  Ueber die Schwefelsäure und ihre Fabrication nach dem Contactverfahren , 1901 .

[66]  M. Muhler,et al.  The Ammonia-Synthesis Catalyst of the Next Generation: Barium-Promoted Oxide-Supported Ruthenium. , 2001, Angewandte Chemie.

[67]  P. Nielsen Poisoning of Ammonia Synthesis Catalysts , 1995 .

[68]  D. Chadwick,et al.  Kinetics of Heterogeneous Catalytic Epoxidation of Propene with Hydrogen Peroxide over Titanium Silicalite (TS-1) , 2010 .

[69]  Jens R. Rostrup-Nielsen,et al.  Atom-Resolved Imaging of Dynamic Shape Changes in Supported Copper Nanocrystals , 2002, Science.

[70]  R. Fehrmann,et al.  Catalytic Activity and Deactivation of SO2Oxidation Catalysts in Simulated Power Plant Flue Gases , 1997 .

[71]  H. Friedrich,et al.  Towards stable catalysts by controlling collective properties of supported metal nanoparticles. , 2013, Nature materials.

[72]  J. Grunwaldt,et al.  In Situ Investigations of Structural Changes in Cu/ZnO Catalysts , 2000 .

[73]  Orschel,et al.  Detection of Reaction Selectivity on Catalyst Libraries by Spatially Resolved Mass Spectrometry. , 1999, Angewandte Chemie.

[74]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[75]  Christian Hoffmann,et al.  Parallele Synthese und Prüfung von Katalysatoren nah an konventionellen Testbedingungen , 1999 .

[76]  G. Ertl Reaktionen an Oberflächen: vom Atomaren zum Komplexen (Nobel‐Vortrag) , 2008 .

[77]  Upakul Deka,et al.  Correlating Metal Poisoning with Zeolite Deactivation in an Individual Catalyst Particle by Chemical and Phase-Sensitive X-ray Microscopy** , 2013, Angewandte Chemie.

[78]  M. Clerici,et al.  Oxidation Reactions Catalyzed by Transition‐Metal‐Substituted Zeolites , 2013 .

[79]  Armin Brenner,et al.  Real-time photoacoustic parallel detection of products from catalyst libraries. , 2002, Angewandte Chemie.