Domination, coloring and stability in P5-reducible graphs

A graph G is P 5 -reducible if every vertex of G lies in at most one induced P 5 (path on five vertices). We show that a number of interesting results concerning P 5 -free graphs can be extended to P 5 -reducible graphs, namely: the existence of a dominating clique or P 3 , the fact that k -colorability can be decided in polynomial time (for fixed k ), and the fact that a maximum stable set can be found in polynomial time in the class of k -colorable P 5 -reducible graphs (for fixed k ).

[1]  Dennis Saleh Zs , 2001 .

[2]  Zsolt Tuza Hereditary Domination in Graphs: Characterization with Forbidden Induced Subgraphs , 2008, SIAM J. Discret. Math..

[3]  Ian Holyer,et al.  The NP-Completeness of Edge-Coloring , 1981, SIAM J. Comput..

[4]  Stephen G. Penrice Dominating sets with small clique covering number , 1997 .

[5]  Z. Tuza,et al.  Dominating cliques in P5-free graphs , 1990 .

[6]  N. Mahadev,et al.  Threshold graphs and related topics , 1995 .

[7]  David P. Dailey Uniqueness of colorability and colorability of planar 4-regular graphs are NP-complete , 1980, Discret. Math..

[8]  Peter L. Hammer,et al.  Difference graphs , 1990, Discret. Appl. Math..

[9]  Zsolt Tuza,et al.  Complexity of Coloring Graphs without Forbidden Induced Subgraphs , 2001, WG.

[10]  Vadim V. Lozin,et al.  Maximum independent sets in subclasses of P5-free graphs , 2009, Inf. Process. Lett..

[11]  Vadim V. Lozin,et al.  On the stable set problem in special P5-free graphs , 2003, Discret. Appl. Math..

[12]  Owen J. Murphy,et al.  Computing independent sets in graphs with large girth , 1992, Discret. Appl. Math..

[13]  Margaret B. Cozzens,et al.  Dominating cliques in graphs , 1991, Discret. Math..

[14]  Zsolt Tuza,et al.  Graph colorings with local constraints - a survey , 1997, Discuss. Math. Graph Theory.

[15]  Gábor Bacsó Complete description of forbidden subgraphs in the structural domination problem , 2009, Discret. Math..

[16]  J. A. Bondy,et al.  Graph Theory , 2008, Graduate Texts in Mathematics.

[17]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[18]  Frédéric Maffray,et al.  Stable sets in k-colorable P5-free graphs , 2009, Inf. Process. Lett..

[19]  Vadim V. Lozin,et al.  A Note on k-Colorability of P5-Free Graphs , 2008, MFCS.

[20]  Myriam Preissmann,et al.  On the NP-completeness of the k-colorability problem for triangle-free graphs , 1996, Discret. Math..