SCENET roadmap for superconductor digital electronics
暂无分享,去创建一个
Gavin Burnell | Alexander B. Zorin | Horst Rogalla | F. H. Uhlmann | H.J.M. ter Brake | F.-Im. Buchholz | T. Claeson | D. G. Crete | P. Febvre | G. J. Gerritsma | Hans Hilgenkamp | R. Humphreys | Z. Ivanov | W. Jutzi | M. Khabipov | Jochen Mannhart | H.-G. Meyer | Jürgen Niemeyer | A. Ravex | M. Russo | J. Satchell | Michael Siegel | H. Töpfer | J.-C. Villegier | E. Wikborg | Dag Winkler | M. Siegel | M. Khabipov | H. Meyer | Z. Ivanov | T. Claeson | W. Jutzi | H. Rogalla | R. Humphreys | D. Winkler | G. Burnell | F.-I. Buchholz | D. Crété | P. Febvre | J. Niemeyer | H. T. Brake | J. Villégier | A. Zorin | J. Mannhart | J. Satchell | A. Ravex | H. Hilgenkamp | G. Gerritsma | E. Wikborg | M. Russo | H. Töpfer
[1] E. Terzioglu,et al. Complementary Josephson junction devices and circuits: a possible new approach to superconducting electronics , 1998, IEEE Transactions on Applied Superconductivity.
[2] Jochen Mannhart,et al. Design and realization of an all d-wave dc π-superconducting quantum interference device , 2000 .
[3] Yu. A. Pashkin,et al. Quantum oscillations in two coupled charge qubits , 2002, Nature.
[4] Theo Scherer,et al. Superconducting coplanar nanolines with 50 nm linewidth , 2003 .
[5] J. Aarts,et al. Coupling of Two Superconductors through a Ferromagnet , 2001 .
[6] H. Rogalla,et al. Superconducting Mg–B films by pulsed-laser deposition in an in situ two-step process using multicomponent targets , 2001 .
[7] J. Niemeyer,et al. Bit error rate experiments with RSFQ circuits realized in SINIS technology , 2002 .
[8] Andrew G. Glen,et al. APPL , 2001 .
[9] J. Niemeyer,et al. Single-charge devices with ultrasmall Nb/AlOx/Nb trilayer Josephson junctions , 2005 .
[10] F.-I. Buchholz,et al. High-frequency performance of RSFQ circuits realized in SINIS technology , 2001 .
[11] H. Rogalla,et al. Superconducting quantum interference device based on MgB2 nanobridges , 2001 .
[12] Ralf Behr,et al. Design and fabrication of 10 V SINIS Josephson arrays for programmable voltage standards , 2000 .
[13] Ralf Behr,et al. Improved 1 V programmable Josephson voltage standard using SINIS junctions , 2002 .
[14] J Aarts,et al. Coupling of two superconductors through a ferromagnet: evidence for a pi junction. , 2001, Physical review letters.
[15] W. F. Bynum,et al. Shady secrets of the Enlightenment , 1999, Nature.
[16] David F. Moore,et al. Realization and properties of MgB2 metal-masked ion damage junctions , 2002 .
[17] Y. Pashkin,et al. Coherent control of macroscopic quantum states in a single-Cooper-pair box , 1999, Nature.
[18] J. Niemeyer,et al. Development of highly integrated RSFQ circuits on the basis of intrinsically shunted Josephson junctions , 2001 .
[19] M. Schubert,et al. Cross-type submicron Josephson junctions using SNS technology for Josephson voltage standard applications , 2003 .
[20] W. Jutzi,et al. A NRZ-output amplifier for RSFQ circuits , 1999, IEEE Transactions on Applied Superconductivity.
[21] Alexander B. Zorin,et al. Operation of a three-junction single-electron pump with on-chip resistors , 2001 .
[22] Paul A. Warburton,et al. Sub-Micron Thin Film Intrinsic Josephson Junctions , 2003 .
[23] Tsuyoshi Ohnishi,et al. In situ growth of superconducting MgB2 thin films with preferential orientation by molecular-beam epitaxy , 2002 .
[24] J. Pekola,et al. Fast and accurate single-island charge pump: implementation of a cooper pair pump. , 2003, Physical review letters.
[25] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[26] T Kontos,et al. Ferromagnetic 0-pi junctions as classical spins. , 2005, Physical review letters.
[27] L Frunzio,et al. An RF-Driven Josephson Bifurcation Amplifier for Quantum Measurements , 2003, cond-mat/0312623.
[28] J. Niemeyer. SINIS junction technology for complex superconducting circuits , 2002 .
[29] Horst Rogalla,et al. π-squids based on Josephson contacts between high-Tc and low-Tc superconductors , 2004 .
[30] Vijay Patel,et al. Quantum superposition of distinct macroscopic states , 2000, Nature.
[31] V. K. Kaplunenko,et al. Rapid single-flux quantum logic using π-shifters , 2003 .
[32] Per Delsing,et al. A sensitive and fast radio frequency single-electron transistor , 2001 .
[33] J. Niemeyer,et al. Properties of SNS Josephson junctions with HfTi interlayers , 2002 .
[34] F. Piquemal,et al. Argument for a direct realization of the quantum metrological triangle , 2000 .
[35] F.-I. Buchholz,et al. An SNS technology process for ramp junction based digital superconducting circuits , 2003 .
[36] O. V. Dolgov,et al. Multiband model for tunneling in MgB2 junctions , 2002 .
[37] Thomas Ortlepp,et al. A general approach for determining the switching probability in rapid single flux quantum logic circuits , 2001 .
[38] J. E. Mooij,et al. Quantum state detection of a superconducting flux qubit using a dc-SQUID in the inductive mode , 2005 .
[39] H. N. Lee,et al. High critical current densities in superconducting MgB2 thin films , 2001 .
[40] W. Jutzi,et al. Measured quality factor and intermodulation product of CPW resonators on silicon substrates with 100 nm wide niobium lines at 17 GHz and 4.2 K , 2002 .
[41] P. Joyez,et al. Manipulating the Quantum State of an Electrical Circuit , 2002, Science.
[42] E. J. Tarte,et al. Directly coupled superconducting quantum interference device magnetometer fabricated in magnesium diboride by focused ion beam , 2002, cond-mat/0203532.
[43] O. Astafiev,et al. Single-shot measurement of the Josephson charge qubit , 2004 .
[44] Pascal Febvre,et al. Comparative study of rapid-single-flux-quantum devices based on low-, medium- and high-Tc technologies , 2002 .
[45] A. Zorin,et al. Radio-frequency Bloch-transistor electrometer. , 2000, Physical review letters.
[46] F.-I. Buchholz,et al. SINIS process development for integrated circuits with characteristic voltages exceeding 250 /spl mu/V , 2001 .
[47] A. B. Zorin. Josephson charge-phase qubit with radio frequency readout: Coupling and decoherence , 2003 .
[48] J. Gilman,et al. Nanotechnology , 2001 .
[49] Qi Li,et al. In situ epitaxial MgB2 thin films for superconducting electronics , 2002, Nature materials.
[50] H.-G. Meyer,et al. Radio-frequency method for investigation of quantum properties of superconducting structures , 2004 .
[51] M. Schubert,et al. A new microwave circuit and a new cryoprobe for Josephson voltage standards , 2002 .
[52] H. E. Hoenig,et al. Degenerate ground state in a mesoscopic YBa2Cu3O(7-x) grain boundary Josephson junction. , 2001, Physical review letters.
[53] Horst Rogalla,et al. Ordering and manipulation of the magnetic moments in large-scale superconducting π-loop arrays , 2003, Nature.
[54] Alexander B. Zorin,et al. Theory of the Bloch-wave oscillations in small Josephson junctions , 1985 .
[55] Orlando,et al. Josephson Persistent-Current Qubit , 2022 .
[56] H. N. Lee,et al. Planar superconductor-normal-superconductor Josephson junctions in MgB2 , 2001 .
[57] T. Duty,et al. Coherent dynamics of a Josephson charge qubit , 2003, cond-mat/0305433.
[58] Horst Rogalla,et al. Magnesium-diboride ramp-type Josephson junctions , 2002 .
[59] J. Nagamatsu,et al. Superconductivity at 39 K in magnesium diboride , 2001, Nature.
[60] M. Schubert,et al. A cross-type SNS junction array for a quantum-based arbitrary waveform synthesizer , 2005, IEEE Transactions on Applied Superconductivity.
[61] J. Niemeyer,et al. Bit error rate experiments in ring-shaped RSFQ circuits , 1999 .