SCENET roadmap for superconductor digital electronics

The roadmap gives an overview on status and future developments in Superconducting Digital Electronics (SDE). Key areas in SDE under focus are applications, circuit simulation and design, circuit fabrication, interfacing and testing, cooling and system aspects, and new devices and materials. Care was taken to establish the vital link between research and development on the one hand and the industrial view on the other hand. The present roadmap is based on extensive input from the roadmap working group on SDE established by SCENET – the European Network for Superconductivity, intensified by the activities of the FLUXONICS Network – the European Foundry for Superconducting Electronics. It is the result of many years of discussion in the group and of consultations with experts in the field, on the way to bring together industrial expectations and visionary extrapolation and current status of technology.

[1]  E. Terzioglu,et al.  Complementary Josephson junction devices and circuits: a possible new approach to superconducting electronics , 1998, IEEE Transactions on Applied Superconductivity.

[2]  Jochen Mannhart,et al.  Design and realization of an all d-wave dc π-superconducting quantum interference device , 2000 .

[3]  Yu. A. Pashkin,et al.  Quantum oscillations in two coupled charge qubits , 2002, Nature.

[4]  Theo Scherer,et al.  Superconducting coplanar nanolines with 50 nm linewidth , 2003 .

[5]  J. Aarts,et al.  Coupling of Two Superconductors through a Ferromagnet , 2001 .

[6]  H. Rogalla,et al.  Superconducting Mg–B films by pulsed-laser deposition in an in situ two-step process using multicomponent targets , 2001 .

[7]  J. Niemeyer,et al.  Bit error rate experiments with RSFQ circuits realized in SINIS technology , 2002 .

[8]  Andrew G. Glen,et al.  APPL , 2001 .

[9]  J. Niemeyer,et al.  Single-charge devices with ultrasmall Nb/AlOx/Nb trilayer Josephson junctions , 2005 .

[10]  F.-I. Buchholz,et al.  High-frequency performance of RSFQ circuits realized in SINIS technology , 2001 .

[11]  H. Rogalla,et al.  Superconducting quantum interference device based on MgB2 nanobridges , 2001 .

[12]  Ralf Behr,et al.  Design and fabrication of 10 V SINIS Josephson arrays for programmable voltage standards , 2000 .

[13]  Ralf Behr,et al.  Improved 1 V programmable Josephson voltage standard using SINIS junctions , 2002 .

[14]  J Aarts,et al.  Coupling of two superconductors through a ferromagnet: evidence for a pi junction. , 2001, Physical review letters.

[15]  W. F. Bynum,et al.  Shady secrets of the Enlightenment , 1999, Nature.

[16]  David F. Moore,et al.  Realization and properties of MgB2 metal-masked ion damage junctions , 2002 .

[17]  Y. Pashkin,et al.  Coherent control of macroscopic quantum states in a single-Cooper-pair box , 1999, Nature.

[18]  J. Niemeyer,et al.  Development of highly integrated RSFQ circuits on the basis of intrinsically shunted Josephson junctions , 2001 .

[19]  M. Schubert,et al.  Cross-type submicron Josephson junctions using SNS technology for Josephson voltage standard applications , 2003 .

[20]  W. Jutzi,et al.  A NRZ-output amplifier for RSFQ circuits , 1999, IEEE Transactions on Applied Superconductivity.

[21]  Alexander B. Zorin,et al.  Operation of a three-junction single-electron pump with on-chip resistors , 2001 .

[22]  Paul A. Warburton,et al.  Sub-Micron Thin Film Intrinsic Josephson Junctions , 2003 .

[23]  Tsuyoshi Ohnishi,et al.  In situ growth of superconducting MgB2 thin films with preferential orientation by molecular-beam epitaxy , 2002 .

[24]  J. Pekola,et al.  Fast and accurate single-island charge pump: implementation of a cooper pair pump. , 2003, Physical review letters.

[25]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[26]  T Kontos,et al.  Ferromagnetic 0-pi junctions as classical spins. , 2005, Physical review letters.

[27]  L Frunzio,et al.  An RF-Driven Josephson Bifurcation Amplifier for Quantum Measurements , 2003, cond-mat/0312623.

[28]  J. Niemeyer SINIS junction technology for complex superconducting circuits , 2002 .

[29]  Horst Rogalla,et al.  π-squids based on Josephson contacts between high-Tc and low-Tc superconductors , 2004 .

[30]  Vijay Patel,et al.  Quantum superposition of distinct macroscopic states , 2000, Nature.

[31]  V. K. Kaplunenko,et al.  Rapid single-flux quantum logic using π-shifters , 2003 .

[32]  Per Delsing,et al.  A sensitive and fast radio frequency single-electron transistor , 2001 .

[33]  J. Niemeyer,et al.  Properties of SNS Josephson junctions with HfTi interlayers , 2002 .

[34]  F. Piquemal,et al.  Argument for a direct realization of the quantum metrological triangle , 2000 .

[35]  F.-I. Buchholz,et al.  An SNS technology process for ramp junction based digital superconducting circuits , 2003 .

[36]  O. V. Dolgov,et al.  Multiband model for tunneling in MgB2 junctions , 2002 .

[37]  Thomas Ortlepp,et al.  A general approach for determining the switching probability in rapid single flux quantum logic circuits , 2001 .

[38]  J. E. Mooij,et al.  Quantum state detection of a superconducting flux qubit using a dc-SQUID in the inductive mode , 2005 .

[39]  H. N. Lee,et al.  High critical current densities in superconducting MgB2 thin films , 2001 .

[40]  W. Jutzi,et al.  Measured quality factor and intermodulation product of CPW resonators on silicon substrates with 100 nm wide niobium lines at 17 GHz and 4.2 K , 2002 .

[41]  P. Joyez,et al.  Manipulating the Quantum State of an Electrical Circuit , 2002, Science.

[42]  E. J. Tarte,et al.  Directly coupled superconducting quantum interference device magnetometer fabricated in magnesium diboride by focused ion beam , 2002, cond-mat/0203532.

[43]  O. Astafiev,et al.  Single-shot measurement of the Josephson charge qubit , 2004 .

[44]  Pascal Febvre,et al.  Comparative study of rapid-single-flux-quantum devices based on low-, medium- and high-Tc technologies , 2002 .

[45]  A. Zorin,et al.  Radio-frequency Bloch-transistor electrometer. , 2000, Physical review letters.

[46]  F.-I. Buchholz,et al.  SINIS process development for integrated circuits with characteristic voltages exceeding 250 /spl mu/V , 2001 .

[47]  A. B. Zorin Josephson charge-phase qubit with radio frequency readout: Coupling and decoherence , 2003 .

[48]  J. Gilman,et al.  Nanotechnology , 2001 .

[49]  Qi Li,et al.  In situ epitaxial MgB2 thin films for superconducting electronics , 2002, Nature materials.

[50]  H.-G. Meyer,et al.  Radio-frequency method for investigation of quantum properties of superconducting structures , 2004 .

[51]  M. Schubert,et al.  A new microwave circuit and a new cryoprobe for Josephson voltage standards , 2002 .

[52]  H. E. Hoenig,et al.  Degenerate ground state in a mesoscopic YBa2Cu3O(7-x) grain boundary Josephson junction. , 2001, Physical review letters.

[53]  Horst Rogalla,et al.  Ordering and manipulation of the magnetic moments in large-scale superconducting π-loop arrays , 2003, Nature.

[54]  Alexander B. Zorin,et al.  Theory of the Bloch-wave oscillations in small Josephson junctions , 1985 .

[55]  Orlando,et al.  Josephson Persistent-Current Qubit , 2022 .

[56]  H. N. Lee,et al.  Planar superconductor-normal-superconductor Josephson junctions in MgB2 , 2001 .

[57]  T. Duty,et al.  Coherent dynamics of a Josephson charge qubit , 2003, cond-mat/0305433.

[58]  Horst Rogalla,et al.  Magnesium-diboride ramp-type Josephson junctions , 2002 .

[59]  J. Nagamatsu,et al.  Superconductivity at 39 K in magnesium diboride , 2001, Nature.

[60]  M. Schubert,et al.  A cross-type SNS junction array for a quantum-based arbitrary waveform synthesizer , 2005, IEEE Transactions on Applied Superconductivity.

[61]  J. Niemeyer,et al.  Bit error rate experiments in ring-shaped RSFQ circuits , 1999 .