Derivative-based global sensitivity measures: General links with Sobol' indices and numerical tests

[1]  Robert E. Shannon,et al.  Design and analysis of simulation experiments , 1978, WSC '78.

[2]  B. Efron,et al.  The Jackknife Estimate of Variance , 1981 .

[3]  Max D. Morris,et al.  Factorial sampling plans for preliminary computational experiments , 1991 .

[4]  M. Artin,et al.  Société Mathématique de France , 1994 .

[5]  B. Henderson-Sellers,et al.  Mathematics and Computers in Simulation , 1995 .

[6]  A. Saltelli,et al.  Importance measures in global sensitivity analysis of nonlinear models , 1996 .

[7]  A. Owen,et al.  Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension , 1997 .

[8]  S. Bobkov Isoperimetric and Analytic Inequalities for Log-Concave Probability Measures , 1999 .

[9]  Djalil CHAFAÏ,et al.  Sur les in'egalit'es de Sobolev logarithmiques , 2000 .

[10]  D. Hunter Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension , 2000 .

[11]  I. Sobola,et al.  Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[12]  I. Sobol Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[13]  A. Saltelli,et al.  Making best use of model evaluations to compute sensitivity indices , 2002 .

[14]  P. Fougères Spectral Gap for log-Concave Probability Measures on the Real Line , 2005 .

[15]  I. Sobol,et al.  Global sensitivity indices for nonlinear mathematical models. Review , 2005 .

[16]  Rui Huang Valuation of mortgage-backed securities , 2006 .

[17]  Stefano Tarantola,et al.  Estimating the approximation error when fixing unessential factors in global sensitivity analysis , 2007, Reliab. Eng. Syst. Saf..

[18]  D. Bakry,et al.  A simple proof of the Poincaré inequality for a large class of probability measures , 2008 .

[19]  Constantinos C. Pantelides,et al.  Monte Carlo evaluation of derivative-based global sensitivity measures , 2009, Reliab. Eng. Syst. Saf..

[20]  Sergei S. Kucherenko,et al.  Derivative based global sensitivity measures and their link with global sensitivity indices , 2009, Math. Comput. Simul..

[21]  Paola Annoni,et al.  Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index , 2010, Comput. Phys. Commun..

[22]  E. Patelli,et al.  Monte Carlo gradient estimation in high dimensions , 2010 .

[23]  Edoardo Patelli,et al.  Global sensitivity of structural variability by random sampling , 2010, Comput. Phys. Commun..

[24]  I. Sobol,et al.  A new derivative based importance criterion for groups of variables and its link with the global sensitivity indices , 2010, Comput. Phys. Commun..

[25]  B. Iooss,et al.  Derivative based global sensitivity measures , 2014, 1412.2619.

[26]  Nilay Shah,et al.  The identification of model effective dimensions using global sensitivity analysis , 2011, Reliab. Eng. Syst. Saf..

[27]  Bertrand Iooss Revue sur l’analyse de sensibilité globale de modèles numériques , 2011 .

[28]  tballest Séminaire de probabilités , 2013 .