Derivative-based global sensitivity measures: General links with Sobol' indices and numerical tests
暂无分享,去创建一个
Matieyendou Lamboni | Bertrand Iooss | Fabrice Gamboa | A.-L. Popelin | F. Gamboa | B. Iooss | Matieyendou Lamboni | A. Popelin | M. Lamboni
[1] Robert E. Shannon,et al. Design and analysis of simulation experiments , 1978, WSC '78.
[2] B. Efron,et al. The Jackknife Estimate of Variance , 1981 .
[3] Max D. Morris,et al. Factorial sampling plans for preliminary computational experiments , 1991 .
[4] M. Artin,et al. Société Mathématique de France , 1994 .
[5] B. Henderson-Sellers,et al. Mathematics and Computers in Simulation , 1995 .
[6] A. Saltelli,et al. Importance measures in global sensitivity analysis of nonlinear models , 1996 .
[7] A. Owen,et al. Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension , 1997 .
[8] S. Bobkov. Isoperimetric and Analytic Inequalities for Log-Concave Probability Measures , 1999 .
[9] Djalil CHAFAÏ,et al. Sur les in'egalit'es de Sobolev logarithmiques , 2000 .
[10] D. Hunter. Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension , 2000 .
[11] I. Sobola,et al. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .
[12] I. Sobol. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .
[13] A. Saltelli,et al. Making best use of model evaluations to compute sensitivity indices , 2002 .
[14] P. Fougères. Spectral Gap for log-Concave Probability Measures on the Real Line , 2005 .
[15] I. Sobol,et al. Global sensitivity indices for nonlinear mathematical models. Review , 2005 .
[16] Rui Huang. Valuation of mortgage-backed securities , 2006 .
[17] Stefano Tarantola,et al. Estimating the approximation error when fixing unessential factors in global sensitivity analysis , 2007, Reliab. Eng. Syst. Saf..
[18] D. Bakry,et al. A simple proof of the Poincaré inequality for a large class of probability measures , 2008 .
[19] Constantinos C. Pantelides,et al. Monte Carlo evaluation of derivative-based global sensitivity measures , 2009, Reliab. Eng. Syst. Saf..
[20] Sergei S. Kucherenko,et al. Derivative based global sensitivity measures and their link with global sensitivity indices , 2009, Math. Comput. Simul..
[21] Paola Annoni,et al. Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index , 2010, Comput. Phys. Commun..
[22] E. Patelli,et al. Monte Carlo gradient estimation in high dimensions , 2010 .
[23] Edoardo Patelli,et al. Global sensitivity of structural variability by random sampling , 2010, Comput. Phys. Commun..
[24] I. Sobol,et al. A new derivative based importance criterion for groups of variables and its link with the global sensitivity indices , 2010, Comput. Phys. Commun..
[25] B. Iooss,et al. Derivative based global sensitivity measures , 2014, 1412.2619.
[26] Nilay Shah,et al. The identification of model effective dimensions using global sensitivity analysis , 2011, Reliab. Eng. Syst. Saf..
[27] Bertrand Iooss. Revue sur l’analyse de sensibilité globale de modèles numériques , 2011 .
[28] tballest. Séminaire de probabilités , 2013 .