The statistical-thermodynamic basis for computation of binding affinities: a critical review.

[1]  W. G. McMillan,et al.  The Statistical Thermodynamics of Multicomponent Systems , 1945 .

[2]  G. E. Myers,et al.  Low molecular weight proteins. Thermodynamics of the association of insulin molecules , 1953 .

[3]  Theory of Protein Solutions. II , 1955 .

[4]  T. L. Hill Theory of Protein Solutions. I , 1955 .

[5]  Thermodynamics for Chemists and Chemical Engineers , 1956, Nature.

[6]  C. Tanford,et al.  Theory of Protein Titration Curves. I. General Equations for Impenetrable Spheres , 1957 .

[7]  W. Kauzmann Some factors in the interpretation of protein denaturation. , 1959, Advances in protein chemistry.

[8]  H. Scheraga,et al.  Entropy changes accompanying association reactions of proteins. , 1963, The Journal of biological chemistry.

[9]  B. Widom,et al.  Some Topics in the Theory of Fluids , 1963 .

[10]  V. Shcherbakov Neighbor interactions and exchange of ligands , 1964 .

[11]  J. Wyman,et al.  THE BINDING POTENTIAL, A NEGLECTED LINKAGE CONCEPT. , 1965, Journal of molecular biology.

[12]  J. E. Prue Ion pairs and complexes: Free energies, enthalpies, and entropies , 1969 .

[13]  W. Jencks,et al.  Entropic contributions to rate accelerations in enzymic and intramolecular reactions and the chelate effect. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[14]  H. C. Andersen Cluster expansions for hydrogen‐bonded fluids. I. Molecular association in dilute gases , 1973 .

[15]  J. Schellman,et al.  Macromolecular binding , 1975 .

[16]  C. Chothia,et al.  Principles of protein–protein recognition , 1975, Nature.

[17]  A. Ben-Naim Solute and solvent effects on chemical equilibria , 1975 .

[18]  Jean-Claude Justice,et al.  Ionic interactions in solutions. I. The association concepts and the McMillan-Mayer theory , 1976 .

[19]  C. Chothia,et al.  Role of hydrophobicity in the binding of coenzymes. Appendix. Translational and rotational contribution to the free energy of dissociation. , 1978, Biochemistry.

[20]  K. Olaussen,et al.  Statistical mechanical model with chemical reaction , 1980 .

[21]  R. Jaenicke,et al.  Reversible high-pressure dissociation of lactic dehydrogenase from pig muscle. , 1980, Biochemistry.

[22]  R. Jaenicke,et al.  Kinetics of reconstitution of porcein muscle lactic dehydrogenase after reversible high pressure dissociation. , 1980, Biophysical Chemistry.

[23]  E Morild,et al.  The theory of pressure effects on enzymes. , 1981, Advances in protein chemistry.

[24]  R. Jaenicke,et al.  Pressure-induced structural changes of pig heart lactic dehydrogenase. , 1981, Biophysical chemistry.

[25]  B. Widom,et al.  Potential-distribution theory and the statistical mechanics of fluids , 1982 .

[26]  A. Szabó,et al.  Role of diffusion in ligand binding to macromolecules and cell-bound receptors. , 1982, Biophysical journal.

[27]  M. Wertheim,et al.  Fluids with highly directional attractive forces. I. Statistical thermodynamics , 1984 .

[28]  David J. Craik,et al.  FUNCTIONAL GROUP CONTRIBUTIONS TO DRUG-RECEPTOR INTERACTIONS , 1985 .

[29]  F. Gurd,et al.  pH-dependent processes in proteins. , 1985, CRC critical reviews in biochemistry.

[30]  J. Hermans,et al.  The Free Energy of Xenon Binding to Myoglobin from Molecular Dynamics Simulation , 1986 .

[31]  J. A. McCammon,et al.  Dynamics and Design of Enzymes and Inhibitors. , 1986 .

[32]  A. D. McLachlan,et al.  Solvation energy in protein folding and binding , 1986, Nature.

[33]  M. Wertheim,et al.  Fluids with highly directional attractive forces. III. Multiple attraction sites , 1986 .

[34]  P. A. Bash,et al.  Free energy calculations by computer simulation. , 1987, Science.

[35]  K. Pitzer,et al.  The restricted primitive model for ionic fluids , 1987 .

[36]  Martin Karplus,et al.  A thermodynamic analysis of solvation , 1988 .

[37]  J. Andrew McCammon,et al.  Quantum simulation of ferrocytochrome c , 1988, Nature.

[38]  William L. Jorgensen,et al.  Efficient computation of absolute free energies of binding by computer simulations. Application to the methane dimer in water , 1988 .

[39]  Harold A. Scheraga,et al.  Free energies of hydration of solute molecules. IV: Revised treatment of the hydration shell model , 1988 .

[40]  Yaoqi Zhou,et al.  Chemical association in simple models of molecular and ionic fluids , 1989 .

[41]  C L Brooks,et al.  Thermodynamics of amide hydrogen bond formation in polar and apolar solvents. , 1989, Journal of molecular biology.

[42]  A V Finkelstein,et al.  The price of lost freedom: entropy of bimolecular complex formation. , 1989, Protein engineering.

[43]  D. Beveridge,et al.  Free energy via molecular simulation: applications to chemical and biomolecular systems. , 1989, Annual review of biophysics and biophysical chemistry.

[44]  Activation and Reaction Volumes in Solution. Part 2. , 1989 .

[45]  H. Erickson,et al.  Co-operativity in protein-protein association. The structure and stability of the actin filament. , 1989, Journal of molecular biology.

[46]  R. Bruccoleri,et al.  On the attribution of binding energy in antigen-antibody complexes McPC 603, D1.3, and HyHEL-5. , 1989, Biochemistry.

[47]  T. Steinmetzer,et al.  Design of Enzyme Inhibitors as Drugs , 1989 .

[48]  M. Karplus,et al.  pKa's of ionizable groups in proteins: atomic detail from a continuum electrostatic model. , 1990, Biochemistry.

[49]  H. Corti,et al.  The cluster theory for electrolyte solutions. Its extension and its limitations , 1990 .

[50]  J M Blaney,et al.  Molecular modeling software and methods for medicinal chemistry. , 1990, Journal of medicinal chemistry.

[51]  Nissim Claude Cohen,et al.  Molecular Modeling Software and Methods for Medicinal Chemistry , 1990 .

[52]  W. C. Still,et al.  Semianalytical treatment of solvation for molecular mechanics and dynamics , 1990 .

[53]  S. Freer,et al.  Design of enzyme inhibitors using iterative protein crystallographic analysis. , 1991, Journal of medicinal chemistry.

[54]  William L. Jorgensen,et al.  Monte Carlo simulations yield absolute free energies of binding for guanine—cytosine and adenine—uracil base pairs in chloroform , 1991 .

[55]  J. Andrew McCammon,et al.  Free energy difference calculations by thermodynamic integration: Difficulties in obtaining a precise value , 1991 .

[56]  R. D. Groot The association constant of a flexible molecule and a single atom: Theory and simulation , 1992 .

[57]  M. Lewis,et al.  Calculation of the free energy of association for protein complexes , 1992, Protein science : a publication of the Protein Society.

[58]  P. Kollman,et al.  Molecular dynamics studies of calixspherand complexes with alkali metal cations: calculation of the absolute and relative free energies of binding of cations to a calixspherand , 1992 .

[59]  Dudley H. Williams,et al.  Partitioning of free energy contributions in the estimation of binding constants : Residual motions and consequences for amide-amide hydrogen bond strengths , 1992 .

[60]  P A Kollman,et al.  Absolute and relative binding free energy calculations of the interaction of biotin and its analogs with streptavidin using molecular dynamics/free energy perturbation approaches , 1993, Proteins.

[61]  K. P. Murphy,et al.  Structural energetics of peptide recognition: Angiotensin II/antibody binding , 1993, Proteins.

[62]  P A Kollman,et al.  What determines the strength of noncovalent association of ligands to proteins in aqueous solution? , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[63]  B Honig,et al.  On the pH dependence of protein stability. , 1993, Journal of molecular biology.

[64]  C. Sander,et al.  An effective solvation term based on atomic occupancies for use in protein simulations , 1993 .

[65]  Reply to the comment on "Entropy of hydrophobic hydration: a new statistical mechanical formulation" , 1993 .

[66]  W. Braun,et al.  Surface area included in energy refinement of proteins. A comparative study on atomic solvation parameters. , 1993, Journal of molecular biology.

[67]  Peter A. Kollman,et al.  FREE ENERGY CALCULATIONS : APPLICATIONS TO CHEMICAL AND BIOCHEMICAL PHENOMENA , 1993 .

[68]  M. Gilson Multiple‐site titration and molecular modeling: Two rapid methods for computing energies and forces for ionizable groups in proteins , 1993, Proteins.

[69]  J J Baldwin,et al.  Application of the three-dimensional structures of protein target molecules in structure-based drug design. , 1994, Journal of medicinal chemistry.

[70]  K. P. Murphy,et al.  Entropy in biological binding processes: Estimation of translational entropy loss , 1994, Proteins.

[71]  M Karplus,et al.  The contribution of vibrational entropy to molecular association. The dimerization of insulin. , 1994, Journal of molecular biology.

[72]  D. Beglov,et al.  Finite representation of an infinite bulk system: Solvent boundary potential for computer simulations , 1994 .

[73]  Thomas Simonson,et al.  Solvation Free Energies Estimated from Macroscopic Continuum Theory: An Accuracy Assessment , 1994 .

[74]  Rainer Jaenicke,et al.  Proteins under pressure , 1994 .

[75]  P. Colman,et al.  Structure-based drug design. , 1994, Current opinion in structural biology.

[76]  Equilibrium polymerization and gelation. I. Integral‐equation theory , 1994 .

[77]  Arieh Warshel,et al.  Effective Methods for Estimation of Binding Energies in Computer‐Aided Drug Design , 1994 .

[78]  I. Kuntz,et al.  Structure-Based Molecular Design , 1994 .

[79]  Hans-Joachim Böhm,et al.  The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure , 1994, J. Comput. Aided Mol. Des..

[80]  R. S. Spolar,et al.  Coupling of local folding to site-specific binding of proteins to DNA. , 1994, Science.

[81]  Alexandre Varnek,et al.  An application of the Miertus‐Scrocco‐Tomasi solvation model in molecular mechanics and dynamics simulations , 1995, J. Comput. Chem..

[82]  A. Holtzer The “cratic correction” and related fallacies , 1995, Biopolymers.

[83]  Ajay,et al.  Computational methods to predict binding free energy in ligand-receptor complexes. , 1995, Journal of medicinal chemistry.

[84]  B. Matthews,et al.  Energetic origins of specificity of ligand binding in an interior nonpolar cavity of T4 lysozyme. , 1995, Biochemistry.

[85]  S Vajda,et al.  Flexible docking and design. , 1995, Annual review of biophysics and biomolecular structure.

[86]  J Hermans,et al.  Hydrophilicity of cavities in proteins , 1996, Proteins.

[87]  S Vajda,et al.  Prediction of protein complexes using empirical free energy functions , 1996, Protein science : a publication of the Protein Society.

[88]  Jeremy C. Smith,et al.  Thermodynamic stability of water molecules in the bacteriorhodopsin proton channel: a molecular dynamics free energy perturbation study. , 1996, Biophysical journal.

[89]  N. Ben-Tal,et al.  Statistical thermodynamic analysis of peptide and protein insertion into lipid membranes. , 1996, Biophysical journal.

[90]  P. Rossky,et al.  Size Dependence of Transfer Free Energies. 2. Hard Sphere Models , 1996 .

[91]  J. Andrew McCammon,et al.  Comparison of Continuum and Explicit Models of Solvation: Potentials of Mean Force for Alanine Dipeptide , 1996 .

[92]  J. Briggs,et al.  Structure-based drug design: computational advances. , 1997, Annual review of pharmacology and toxicology.

[93]  R. Eldik,et al.  Activation and Reaction Volumes in Solution. 3. , 1978, Chemical reviews.