Wavelet-Galerkin method for the Kolmogorov equation

It is well known that the Kolmogorov equation plays an important role in applied science. For example, the nonlinear filtering problem, which plays a key role in modern technologies, was solved by Yau and Yau [1] by reducing it to the off-line computation of the Kolmogorov equation. In this paper, we develop a theorical foundation of using the wavelet-Galerkin method to solve linear parabolic P.D.E. We apply our theory to the Kolmogorov equation. We give a rigorous proof that the solution of the Kolmogorov equation can be approximated very well in any finite domain by our wavelet-Galerkin method. An example is provided by using Daubechies D"4 scaling functions.

[1]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .

[2]  V. Benes,et al.  Estimation and control for linear, partially observable systems with non-gaussian initial distribution☆☆☆ , 1983 .

[3]  G.-G. Hu Finite-dimensional filters with nonlinear drift. , 1997 .

[4]  Behzad Shahraray,et al.  Uniform Resampling of Digitized Contours , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Randolph E. Bank,et al.  A MULTI-LEVEL ITERATIVE METHOD FOR NONLINEAR ELLIPTIC EQUATIONS , 1981 .

[6]  Martin H. Schultz,et al.  Elliptic problem solvers , 1981 .

[7]  Jacques Liandrat,et al.  Resolution of the 1D regularized Burgers equation using a spatial wavelet approximation , 1990 .

[8]  Stephen S.-T. Yau,et al.  Existence and decay estimates for time dependent parabolic equation with application to Duncan–Mortensen–Zakai equation , 1998 .

[9]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[10]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[11]  S. Yau,et al.  Finite-dimensional filters with nonlinear drift. III: Duncan-Mortensen-Zakai equation with arbitrary initial condition for the linear filtering system and the Benes filtering system , 1997, IEEE Transactions on Aerospace and Electronic Systems.

[12]  R. Bellman Stability theory of differential equations , 1953 .

[13]  Stephen S.-T. Yau,et al.  Real time solution of nonlinear filtering problem without memory I , 2000 .

[14]  Michael Hazewinkel Lectures on linear and nonlinear filtering , 1988 .

[15]  W. Schiehlen,et al.  on Analysis and estimation of stochastic mechanical systems , 1988 .

[16]  D. Ocone Topics in Nonlinear Filtering Theory. , 1980 .

[17]  A. Makowski Filtering formulae for partially observed linear systems with non-gaussian initial conditions , 1986 .

[18]  H. Weinberger,et al.  Maximum principles in differential equations , 1967 .

[19]  S. Mallat Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .

[20]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[21]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[22]  Séminaire sur les équations aux dérivées partielles,et al.  Séminaire equations aux dérivées partielles , 1988 .

[23]  Charles K. Chui,et al.  An Introduction to Wavelets , 1992 .

[24]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..