Physical and Chemical Processes of Seafloor Mineralization at Mid‐Ocean Ridges

[1]  H. Bäcker,et al.  Hydrothermal activity and sulphide formation in axial valleys of the East Pacific Rise crest between 18 and 22°S , 1985 .

[2]  R. Haymon,et al.  Hydrothermal sulfide and oxide deposits on seamounts near 21°N, East Pacific Rise , 1987 .

[3]  Jody W. Deming,et al.  Growth of ‘black smoker’ bacteria at temperatures of at least 250 °C , 1983, Nature.

[4]  K. V. Damm Systematics of and postulated controls on submarine hydrothermal solution chemistry , 1988 .

[5]  J. Childress,et al.  Short-term temperature variability in the Rose Garden hydrothermal vent field: an unstable deep-sea environment , 1988 .

[6]  M. Mottl,et al.  Heat flux from black smokers on the Endeavour and Cleft segments, Juan de Fuca Ridge , 1994 .

[7]  G. Auclair,et al.  Geological setting and mineralogical and geochemical investigations on sulfide deposits near 13°N on the East Pacific Rise , 1988 .

[8]  H. Jannasch,et al.  Bacterial Sulfate Reduction Above 100�C in Deep-Sea Hydrothermal Vent Sediments , 1992, Science.

[9]  R. Ballard,et al.  Massive deep-sea sulphide ore deposits discovered on the East Pacific Rise , 1979, Nature.

[10]  C. Lalou,et al.  Mineralogical zonation and radiochronological relations in a large sulfide chimney from the East Pacific Rise at 18 degrees 25'S , 1988 .

[11]  W. Seyfried,et al.  Mineralization, alteration, and hydrothermal metamorphism of the ophiolite-hosted Turner-Albright sulfide deposit, southwestern Oregon , 1988 .

[12]  J. Edmond,et al.  The Genesis of Hot Spring Deposits on the East Pacific Rise, 21°N , 1983 .

[13]  E. Baker,et al.  Hydrothermal particle plumes over the southern Juan de Fuca Ridge , 1985, Nature.

[14]  J. Delaney,et al.  Large massive sulfide deposits in a newly discovered active hydrothermal system, The High-Rise Field, Endeavour Segment, Juan De Fuca Ridge , 1993 .

[15]  D. Roberts,et al.  Chemical Composition of Sediments and Interstitial Brines from the Atlantis II, Discovery and Chain Deeps , 1969 .

[16]  A. P. Lisitzin,et al.  Hydrothermal oxide and gold-rich sulfate deposits of Franklin Seamount, western Woodlark Basin, Papua New Guinea , 1993 .

[17]  Robert J. Rosenbauer,et al.  The critical point and two-phase boundary of seawater, 200–500°C , 1984 .

[18]  W. Shanks,et al.  The composition of massive sulfide deposits from the sediment-covered floor of Escanaba Trough, Gorda Ridge; implications for depositional processes , 1988 .

[19]  R. Rosenbauer,et al.  Phase separation in seafloor geothermal systems; an experimental study of the effects on metal transport , 1987 .

[20]  D. Banks A fossil hydrothermal worm assemblage from the Tynagh lead–zinc deposit in Ireland , 1985, Nature.

[21]  W. Goodfellow,et al.  Character of active hydrothermal mounds and nearby altered hemipelagic sediments in the hydrothermal areas of Middle Valley, northern Juan de Fuca Ridge; data on shallow cores , 1993 .

[22]  S. Solomon,et al.  Microearthquake Characteristics of a Mid‐Ocean Ridge along‐axis high , 1992 .

[23]  K. V. Damm,et al.  SEAFLOOR HYDROTHERMAL ACTIVITY: BLACK SMOKER CHEMISTRY AND CHIMNEYS , 1990 .

[24]  M. Mottl,et al.  Chemical processes in buoyant hydrothermal plumes on the East Pacific Rise near 21°N , 1990 .

[25]  V. Tunnicliffe,et al.  Vent and nonvent faunas of Cleft segment, Juan de Fuca Ridge, and their relations to lava age , 1994 .

[26]  S. E. Drummond,et al.  Chemical evolution and mineral deposition in boiling hydrothermal systems , 1985 .

[27]  J. Delaney,et al.  The heat and fluid transfer associated with the flanges on hydrothermal venting structures , 1992 .

[28]  Z. Nawab Red Sea mining: A new era , 1984 .

[29]  P. Herzig,et al.  Metallogenesis in back-arc environments; the Lau Basin example , 1993 .

[30]  D. Clague,et al.  Mineralogy and chemistry of massive sulfide deposits from the Juan de Fuca Ridge , 1984 .

[31]  C. V. Raman,et al.  Active and relict sea-floor hydrothermal mineralization at the TAG hydrothermal field, Mid-Atlantic Ridge , 1993 .

[32]  L. O. Olson,et al.  Temperature measurements during initiation and growth of a black smoker chimney , 1990, Nature.

[33]  P. Bitter,et al.  Early Carboniferous low-temperature hydrothermal vent communities from Newfoundland , 1990, Nature.

[34]  R. Zierenberg,et al.  Microbial control of silver mineralization at a sea-floor hydrothermal site on the northern Gorda Ridge , 1990 .

[35]  R. Haymon,et al.  Hot spring deposits on the East Pacific Rise at 21°N: preliminary description of mineralogy and genesis , 1981 .

[36]  J. Peter,et al.  Mineralogy, composition, and fluid inclusion microthermometry of sea-floor hydrothermal deposits in the southern trough of Guaymas Basin, Gulf of California , 1988 .

[37]  G. McMurtry,et al.  Radial growth rates and 210Pb ages of hydrothermal massive sulfides from the Juan de Fuca Ridge , 1991 .

[38]  B. Clark,et al.  The mineralogy and the isotopic composition of sulfur in hydrothermal sulfide/sulfate deposits on the East Pacific Rise, 21°N latitude , 1981 .

[39]  V. Tunnicliffe,et al.  Faunal composition and organic surface encrustations at hydrothermal vents on the southern Juan De Fuca Ridge , 1987 .

[40]  W. Chadwick,et al.  SeaBeam depth changes associated with recent lava flows, Coaxial Segment, Juan De Fuca Ridge: Evidence for multiple eruptions between 1981–1993 , 1995 .

[41]  E. Baker,et al.  Cataclysmic hydrothermal venting on the Juan de Fuca Ridge , 1987, Nature.

[42]  F. W. Dickson,et al.  The solubility of anhydrite (CaSO4) in NaCl-H2O from 100 to 450°C and 1 to 1000 bars , 1969 .

[43]  J. Lupton,et al.  Hydrothermal vents on an axis seamount of the Juan de Fuca ridge , 1985, Nature.

[44]  G. Massoth,et al.  Submarine venting of phase-separated hydrothermal fluids at Axial Volcano, Juan de Fuca Ridge , 1989, Nature.

[45]  R. Koski,et al.  Pb isotopes in sulfides from mid-ocean ridge hydrothermal sites , 1988 .

[46]  G. Massoth,et al.  Geochemistry of north Cleft segment vent fluids: Temporal changes in chlorinity and their possible relation to recent volcanism , 1994 .

[47]  D. Fornari,et al.  Geochemical studies of abyssal lavas recovered by DSRV Alvin from Eastern Galapagos Rift, Inca Transform, and Ecuador Rift: 3. Trace element abundances and petrogenesis , 1983 .

[48]  W. Seyfried,et al.  Formation of massive sulfide deposits on oceanic ridge crests: Incremental reaction models for mixing between hydrothermal solutions and seawater , 1984 .

[49]  R. Binns,et al.  Actively forming polymetallic sulfide deposits associated with felsic volcanic rocks in the eastern Manus back-arc basin, Papua New Guinea , 1993 .

[50]  M. Tivey,et al.  Submersible investigation of an extinct hydrothermal system on the Galapagos Ridge; sulfide mounds, stockwork zone, and differentiated lavas , 1988 .

[51]  L. Cathles A capless 350 degrees C flow zone model to explain megaplumes, salinity variations, and high-temperature veins in ridge axis hydrothermal systems , 1993 .

[52]  M. Hannington,et al.  Mineralogy and geochemistry of active and inactive chimneys and massive sulfide, Middle Valley, northern Juan de Fuca Ridge; an evolving hydrothermal system , 1993 .

[53]  Y. Fouquet,et al.  Filamentous iron-silica deposits from modern and ancient hydrothermal sites , 1988 .

[54]  D. Vanko,et al.  Massive sulfides with fluid-inclusion-bearing quartz from a young seamount on the East Pacific Rise , 1991 .

[55]  E. Baker,et al.  A method for quantitatively estimating diffuse and discrete hydrothermal discharge , 1993 .

[56]  G. Auclair,et al.  Distribution of selenium in high-temperature hydrothermal sulfide deposits at 13 degrees North, East Pacific Rise , 1987 .

[57]  B. Simoneit PETROLEUM GENERATION IN SUBMARINE HYDROTHERMAL SYSTEMS: AN UPDATE , 1988 .

[58]  W. Goodfellow,et al.  Sulfide formation and hydrothermal alteration of hemipelagic sediment in Middle Valley, northern Juan De Fuca Ridge , 1988 .

[59]  J. Auzende,et al.  The White Lady hydrothermal field, North Fiji back-arc basin, Southwest Pacific , 1993 .

[60]  R. Haymon,et al.  Caminite; a new magnesium-hydroxide-sulfate-hydrate mineral found in a submarine hydrothermal deposit, East Pacific Rise, 21 degrees N , 1986 .

[61]  M. Lilley,et al.  Rapid growth at deep-sea vents , 1994, Nature.

[62]  P. A. Baedecker,et al.  Sea-floor massive sulfide deposits from 21 degrees N East Pacific Rise, Juan de Fuca Ridge, and Galapagos Rift; bulk chemical composition and economic implications , 1983 .

[63]  E. Gibson,et al.  Mineralogical studies of sulfide samples and volatile concentrations of basalt glasses from the southern Juan de Fuca Ridge. , 1987, Journal of geophysical research.

[64]  Y. Fouquet,et al.  New age data for Mid‐Atlantic Ridge hydrothermal sites: TAG and Snakepit chronology revisited , 1993 .

[65]  S. Juniper,et al.  Accumulation of minerals and trace elements in biogenic mucus at hydrothermal vents , 1986 .

[66]  J. Delaney,et al.  On the partitioning of heat flux between diffuse and point source seafloor venting , 1992 .

[67]  V. Tunnicliffe,et al.  Time-series measurements of hydrothermal activity on northern Juan De Fuca Ridge , 1985 .

[68]  W. Tufar Modern Hydrothermal Activity, Formation of Complex Massive Sulfide Deposits and Associated Vent Communities in the Manus Back-Arc Basin (Bismarck Sea, Papua New Guinea) , 1990 .

[69]  M. Hannington,et al.  Relict hydrothermal zones in the TAG Hydrothermal Field, Mid‐Atlantic Ridge 26°N, 45°W , 1993 .

[70]  W. Normark Submarine fissure eruptions and hydrothermal vents on the southern Juan de Fuca Ridge: preliminary observations from the submersible Alvin , 1986 .

[71]  D. Clague,et al.  Minor and trace element geochemistry of volcanic rocks dredged from the Galapagos Spreading Center: Role of crystal fractionation and mantle heterogeneity , 1981 .

[72]  W. Goodfellow,et al.  Massive sulfides in a sedimented rift valley, northern Juan de Fuca Ridge , 1987 .

[73]  Dawn J. Wright,et al.  Hydrothermal vent distribution along the East Pacific Rise crest (9°09′–54′N) and its relationship to magmatic and tectonic processes on fast-spreading mid-ocean ridges , 1991 .

[74]  J. Charlou,et al.  A detailed study of the Lucky-Strike hydrothermal site and discovery of a new hydrothermal site: « Menez-Gwen ». Preliminary results of DIVA 1 cruise (5-29 May, 1994) , 1994 .

[75]  J. Alt Hydrothermal oxide and nontronite deposits on seamounts in the eastern Pacific , 1988 .

[76]  B. Simoneit,et al.  14C ages of hydrothermal petroleum and carbonate in Guaymas Basin, Gulf of California: Implications for oil generation, expulsion, and migration , 1991 .

[77]  H. Gundlach,et al.  New discoveries of massive sulfides on the East Pacific Rise , 1988 .

[78]  S. Humphris,et al.  Active vents and massive sulfides at 26 degrees N (TAG) and 23 degrees N (Snakepit) on the Mid-Atlantic Ridge , 1988 .

[79]  Matthew C. Smith,et al.  Volcanic eruption of the mid-ocean ridge along the East Pacific Rise crest at 9°45-52'N: direct submersible observations of seafloor phenomena associated with an eruption event in April, 1991 , 1993 .

[80]  M. Leybourne,et al.  Fluid inclusion petrography and microthermometry of the Middle Valley hydrothermal system, Northern Juan de Fuca Ridge , 1994 .

[81]  M. Hannington,et al.  Comparative mineralogy and geochemistry of gold-bearing sulfide deposits on the mid-ocean ridges , 1991 .

[82]  M. Fisk,et al.  Major off-axis hydrothermal activity on the northern Gorda Ridge , 1990 .

[83]  David L. Williams,et al.  Submarine Thermal Springs on the Gal�pagos Rift , 1979, Science.

[84]  G. Massoth,et al.  Geochemistry of hydrothermal fluids from Axial Seamount hydrothermal emissions study vent field, Juan de Fuca Ridge: Subseafloor boiling and subsequent fluid‐rock interaction , 1990 .

[85]  D. Bideau,et al.  Observations of present-day activity at super-fast spreading : volcanic, hydrothermal and tectonic studies of the EPR 17-19°S , 1994 .

[86]  D. Nelson,et al.  Massive natural occurrence of unusually large bacteria (Beggiatoa sp.) at a hydrothermal deep-sea vent site , 1989, Nature.

[87]  M. Hannington,et al.  Cores drilled into active smokers on Juan de Fuca ridge , 1992 .

[88]  W. Ryan,et al.  Volcanic Episodicity and a Non‐Steady State Rift Valley Along Northeast Pacific Spreading Centers: Evidence From Sea MARC I , 1986 .

[89]  J. Delaney,et al.  Response of two‐phase fluids to fracture configurations within submarine hydrothermal systems , 1988 .

[90]  R. Binns,et al.  ACTIVE HYDROTHERMAL ACTIVITY AT FRANKLIN SEAMOUNT, WESTERN WOODLARK SEA (PAPUA NEW GUINEA) , 1991 .

[91]  Richard A. Feely,et al.  Composition and dissolution of black smoker particulates from active vents on the Juan de Fuca Ridge , 1987 .

[92]  J. Cann,et al.  Modeling periodic megaplume emission by black smoker systems , 1989 .

[93]  L. Germanovich,et al.  Silica Precipitation in Fractures and the Evolution of Permeability in Hydrothermal Upflow Zones , 1993, Science.

[94]  Everett L. Shock,et al.  Metal-organic complexes in geochemical processes: Calculation of standard partial molal thermodynamic properties of aqueous acetate complexes at high pressures and temperatures , 1993 .

[95]  U. Graham,et al.  Sulfide-sulfate chimneys on the East Pacific Rise, 11 degrees and 13 degrees N latitudes; Part I, Mineralogy and paragenesis , 1988 .

[96]  A. C. Campbell,et al.  A time series of vent fluid compositions from 21°N, East Pacific Rise (1979, 1981, 1985), and the Guaymas Basin, Gulf of California (1982, 1985) , 1988 .

[97]  M. Hannington,et al.  Mineralogy and geochemistry of a hydrothermal silica-sulfide-sulfate spire in the caldera of Axial Seamount, Juan De Fuca Ridge , 1988 .

[98]  C. German,et al.  A geochemical study of metalliferous sediment from the TAG Hydrothermal Mound, 26°08′N, Mid‐Atlantic Ridge , 1993 .

[99]  V. Tunnicliffe,et al.  Hydrothermal vents of Explorer Ridge, northeast Pacific , 1986 .

[100]  I. Jonasson,et al.  Two zinc-rich chimneys from the plume site, southern Juan de Fuca Ridge , 1988 .

[101]  W. Shanks,et al.  Mineralogy and geochemistry of a sediment‐hosted hydrothermal sulfide deposit from the Southern Trough of Guaymas Basin, Gulf of California , 1985 .

[102]  J. Turner,et al.  A laboratory and theoretical study of the growth of black smoker chimneys , 1987 .

[103]  W. L. Marshall,et al.  Amorphous silica solubilities IV. Behavior in pure water and aqueous sodium chloride, sodium sulfate, magnesium chloride, and magnesium sulfate solutions up to 350°C , 1982 .

[104]  V. Tunnicliffe,et al.  Dynamic character of the hydrothermal vent habitat and the nature of sulphide chimney fauna , 1990 .

[105]  I. I. Kim,et al.  No evidence from multichannel reflection data for a crustal magma chamber in the MARK area on the Mid-Atlantic Ridge , 1990, Nature.

[106]  D. Janecky,et al.  Computational modeling of chemical and sulfur isotopic reaction processes in sea-floor hydrothermal systems; chimneys, massive sulfide, and subjacent alteration zones , 1988 .

[107]  S. E. Drummond,et al.  Chemical Processes of Kuroko Formation , 1983 .

[108]  A. C. Campbell,et al.  Chemistry of hot springs on the Mid-Atlantic Ridge , 1988, Nature.

[109]  Robert J Collier,et al.  Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean: The Galapagos data , 1979 .

[110]  J. Schopf,et al.  Microfossils of the Early Archean Apex Chert: New Evidence of the Antiquity of Life , 1993, Science.

[111]  R. Hékinian,et al.  Sulfide Deposits from the East Pacific Rise Near 21�N , 1980, Science.

[112]  Ross R. Large,et al.  Australian volcanic-hosted massive sulfide deposits; features, styles, and genetic models , 1992 .

[113]  R. Zierenberg,et al.  Massive sulfide deposits at 21°N, East Pacific Rise: Chemical composition, stable isotopes, and phase equilibria , 1984 .

[114]  M. D. Wit,et al.  Early Archean (>3.2 Ga) Fe-oxide-rich, hydrothermal discharge vents in the Barberton greenstone belt, South Africa , 1994 .

[115]  R. Zierenberg,et al.  Submersible Observations in Escanaba Trough, Southern Gorda Ridge , 1990 .

[116]  M. Hannington,et al.  Sulfidation equilibria as guides to gold mineralization in volcanogenic massive sulfides; evidence from sulfide mineralogy and the composition of sphalerite , 1989 .

[117]  S. Hammond Relationships between lava types, seafloor morphology, and the occurrence of hydrothermal venting in the ASHES vent field of Axial Volcano. [Axial Seamount Hydrothermal Emission Study] , 1990 .

[118]  H. Barnes,et al.  Ore solution chemistry; V, Solubilities of chalcopyrite and chalcocite assemblages in hydrothermal solution at 200 degrees to 350 degrees C , 1976 .

[119]  H. Barnes,et al.  Sphalerite-wurtzite equilibria and stoichiometry , 1972 .

[120]  B. Cousens,et al.  Basalt geochemistry of the Explorer Ridge area, northeast Pacific Ocean , 1984 .

[121]  J. Lange,et al.  Ore paragenesis of recent hydrothermal deposits at the Cocos-Nazca plate boundary (Galápagos Rift) at 85‡ 51' and 85‡ 55' W: Complex massive sulfide mineralizations, non-sulfidic mineralizations and mineralized basalts , 1986 .

[122]  G. Constantinou,et al.  Black smoker chimney fragments in Cyprus sulphide deposits , 1984, Nature.

[123]  P. Rona Deep-sea geysers of the Atlantic , 1992 .

[124]  K. V. Damm,et al.  Chemical evolution of mid-ocean ridge hot springs☆ , 1985 .

[125]  J. Delaney,et al.  Growth of large sulfide structures on the endeavour segment of the Juan de Fuca ridge , 1986 .

[126]  R. Fournier A method of calculating quartz solubilities in aqueous sodium chloride solutions , 1983 .

[127]  B. Simoneit,et al.  Liquid hydrocarbon-bearing inclusions in modern hydrothermal chimmeys and mounds from the southern trough of Guaymas Basin, Gulf of California , 1990 .

[128]  M. Hannington,et al.  Gold and native copper in supergene sulphides from the Mid-Atlantic Ridge , 1988, Nature.

[129]  K. V. Damm,et al.  Chemistry of submarine hydrothermal solutions at Guaymas Basin, Gulf of California , 1985 .

[130]  M. Hannington,et al.  Gold-rich sea-floor gossans in the Troodos Ophiolite and on the Mid-Atlantic Ridge , 1991 .

[131]  E. Baker A 6‐year time series of hydrothermal plumes over the Cleft segment of the Juan de Fuca Ridge , 1994 .

[132]  R. Haymon,et al.  Fossils of Hydrothermal Vent Worms from Cretaceous Sulfide Ores of the Samail Ophiolite, Oman , 1984, Science.

[133]  A. Lasaga,et al.  Kinetics of reactions between aqueous sulfates and sulfides in hydrothermal systems , 1982 .

[134]  K. Crook,et al.  a Hydrothermal Field in the Rift Zone of the Manus Basin, Bismarck Sea , 1993 .

[135]  W. Moore,et al.  Evolution of hydrothermal activity on the Juan de Fuca Ridge: Observations, mineral ages, and Ra isotope ratios , 1991 .

[136]  E. Baker,et al.  Composition and sedimentation of hydrothermal plume particles from North Cleft segment, Juan de Fuca Ridge , 1994 .

[137]  P. Rona,et al.  Discrete and diffuse heat transfer atashes vent field, Axial Volcano, Juan de Fuca Ridge , 1992 .

[138]  J. Karson,et al.  An example of a recent accretion on the Mid-Atlantic Ridge: the Snake Pit neovolcanic ridge (MARK area, 23°22′N) , 1991 .

[139]  E. Oudin,et al.  Vers hydrothermaux fossiles dans une mineralisation sulfuree des ophiolites de Nouvelle-Caledonie , 1985 .

[140]  R. Feely,et al.  Trace metals in hydrothermal solutions from Cleft segment on the southern Juan de Fuca Ridge , 1994 .

[141]  C. Fox Evidence of active ground deformation on the mid‐ocean ridge: Axial Seamount, Juan de Fuca Ridge, April‐June 1988 , 1990 .

[142]  D. Kadko,et al.  Compositions, growth mechanisms, and temporal relations of hydrothermal sulfide-sulfate-silica chimneys at the northern Cleft segment, Juan de Fuca Ridge , 1994 .

[143]  Charles W. Smith,et al.  RADIOACTIVE ORPHANS IN BARITE-RICH CHIMNEYS, AXIAL CALDERA, JUAN DE FUCA RIDGE , 1988 .

[144]  R. Ballard,et al.  Intense hydrothermal activity at the axis of the east pacific rise near 13°N: Sumbersible witnesses the growth of sulfide chimney , 1983 .

[145]  J. Boulègue,et al.  Morphological and analytical study of hydrothermal sulfides from 21° north East Pacific Rise , 1985 .

[146]  J. Edmond,et al.  Flow rates in the axial hot springs of the East Pacific Rise (21°N): Implications for the heat budget and the formation of massive sulfide deposits , 1984 .

[147]  G. Robinson,et al.  Hydrothermal ore-forming processes in the light of studies in rock-buffered systems; I, Iron-copper-zinc-lead sulfide solubility relations , 1992 .

[148]  H. Barnes,et al.  Ore solution chemistry; VII, Stabilities of chloride and bisulfide complexes of zinc to 350 degrees C , 1987 .

[149]  J. Baross,et al.  An Hypothesis Concerning the Relationships Between Submarine Hot Springs and the Origin of Life on Earth , 1981 .

[150]  J. B. Corliss Hot springs and the origin of life , 1990, Nature.

[151]  Deborah K. Smith,et al.  Hundreds of small volcanoes on the median valley floor of the Mid-Atlantic Ridge at 24–30° N , 1990, Nature.

[152]  P. Rona,et al.  Black smokers, massive sulphides and vent biota at the Mid-Atlantic Ridge , 1986, Nature.

[153]  G. Massoth,et al.  Gradients in the composition of hydrothermal fluids from the Endeavour segment vent field: Phase separation and brine loss , 1994 .

[154]  P. Gente,et al.  Tectonic setting and mineralogical and geochemical zonation in the Snake Pit sulfide deposit (Mid-Atlantic Ridge at 23 degrees N) , 1993 .

[155]  D. Kadko,et al.  An estimate of hydrothermal fluid residence times and vent chimney growth rates based on210Pb/Pb ratios and mineralogic studies of sulfides dredged from the Juan de Fuca Ridge , 1985 .

[156]  B. Doe Zinc, copper, and lead in mid-ocean ridge basalts and the source rock control on Zn/Pb in ocean-ridge hydrothermal deposits☆ , 1994 .

[157]  P. Halbach,et al.  Geology and mineralogy of massive sulfide ores from the central Okinawa Trough, Japan , 1993 .

[158]  V. Tunnicliffe,et al.  Influence of a tube-building polychaete on hydrothermal chimney mineralization , 1992 .

[159]  J. Deming,et al.  Deep-sea smokers: windows to a subsurface biosphere? , 1993, Geochimica et cosmochimica acta.

[160]  J. Reyss,et al.  Actinide-series disequilibrium as a tool to establish the chronology of deep-sea hydrothermal activity☆ , 1993 .

[161]  Deborah K. Smith,et al.  The role of seamount volcanism in crustal construction at the Mid‐Atlantic Ridge (24°–30°N) , 1992 .

[162]  C. Blount Barite solubilities and thermodynamic quantities up to 300 degrees C and 1400 bars , 1977 .

[163]  K. Crook,et al.  Hydrothermal chimneys and associated fauna in the Manus Back‐Arc Basin, Papua New Guinea , 1986 .

[164]  Ray F. Weiss,et al.  Chemistry of submarine hydrothermal solutions at 21 °N, East Pacific Rise , 1985 .

[165]  J. Trefry,et al.  History and geochemistry of a metalliferous sediment core from the Mid-Atlantic Ridge at 26°N , 1988 .

[166]  M. Barley A review of Archean volcanic-hosted massive sulfide and sulfate mineralization in Western Australia , 1992 .

[167]  W. Chadwick,et al.  Volcanic and hydrothermal processes associated with a recent phase of seafloor spreading at the northern Cleft segment: Juan de Fuca Ridge , 1994 .

[168]  R. Zierenberg,et al.  Mineralogy and geochemistry of epigenetic features in metalliferous sediment, Atlantis II Deep, Red Sea , 1983 .

[169]  W. Normark,et al.  Distribution and Composition of Massive Sulfide Deposits at Escanaba Trough, Southern Gorda Ridge , 1990 .

[170]  J. Mutter,et al.  Multi-channel seismic imaging of a crustal magma chamber along the East Pacific Rise , 1987, Nature.

[171]  M. Lilley,et al.  Anomalous CH4 and NH4+ concentrations at an unsedimented mid-ocean-ridge hydrothermal system , 1993, Nature.

[172]  A. C. Campbell,et al.  Chemical controls on the composition of vent fluids at 13°–11°N and 21°N, East Pacific Rise , 1988 .

[173]  H. Barnes,et al.  Mineralogy, Geochemistry, and Ore Genesis of Hydrothermal Sediments from the Atlantis II Deep, Red Sea , 1983 .

[174]  P. Rona,et al.  Geologic controls of hydrothermal activity in the Mid-Atlantic Ridge rift valley: Tectonics and volcanics , 1988 .

[175]  J. Franklin,et al.  Relationships between geologic development of ridge crests and sulfide deposits in the Northeast Pacific Ocean , 1989 .

[176]  R. Haymon Growth history of hydrothermal black smoker chimneys , 1983, Nature.

[177]  J. Trefry,et al.  FIELD AND LABORATORY STUDIES OF METAL UPTAKE AND RELEASE BY HYDROTHERMAL PRECIPITATES , 1993 .

[178]  John R. Delaney,et al.  Geology of a vigorous hydrothermal system on the Endeavour segment, Juan de Fuca Ridge , 1992 .

[179]  C. Fox Consequences of phase separation on the distribution of hydrothermal fluids at ASHES Vent Field, Axial Volcano, Juan de Fuca Ridge , 1990 .

[180]  R. Huber,et al.  A novel group of abyssal methanogenic archaebacteria (Methanopyrus) growing at 110 °C , 1989, Nature.

[181]  S. Solomon,et al.  Microearthquakes beneath Median Valley of Mid-Atlantic Ridge near 23°N: Tomography and tectonics , 1988 .

[182]  W. Goodfellow,et al.  Geology, mineralogy, and chemistry of sediment-hosted clastic massive sulfides in shallow cores, Middle Valley, northern Juan de Fuca Ridge , 1993 .

[183]  M. Tivey,et al.  Mineral precipitation in the walls of black smoker chimneys: A quantitative model of transport and chemical reaction , 1990 .

[184]  R. Hékinian,et al.  Volcanism and metallogenesis of axial and off-axial structures on the East Pacific Rise near 13 degrees N , 1985 .

[185]  K. Becker,et al.  Hydrothermal plumes, hot springs, and conductive heat flow in the Southern Trough of Guaymas Basin , 1985 .

[186]  M. Hannington The formation of atacamite during weathering of sulfides on the modern seafloor , 1993 .

[187]  H. Elderfield,et al.  A dual origin for the hydrothermal component in a metalliferous sediment core from the Mid-Atlantic Ridge , 1993 .

[188]  K. Pitzer,et al.  Phase relations and adiabats in boiling seafloor geothermal systems , 1985 .

[189]  C. German,et al.  Hydrothermal activity on the Reykjanes Ridge: the Steinahóll vent-field at 63°06′N , 1994 .

[190]  H. Jannasch,et al.  Chemosynthetic microbial activity at Mid-Atlantic Ridge hydrothermal vent sites , 1993 .

[191]  E. Baker,et al.  Episodic venting of hydrothermal fluids from the Juan de Fuca Ridge , 1989 .

[192]  R. Ballard,et al.  Morphology and evolution of hydrothermal deposits at the axis of the east pacific rise , 1985 .

[193]  Anne Arquit Geological and hydrothermal controls on the distribution of megafauna in Ashes Vent Field, Juan de Fuca Ridge , 1990 .

[194]  J. Delaney,et al.  The Juan de Fuca Ridge—Hot Spot—Propagating Rift System: New tectonic, geochemical, and magnetic data , 1981 .

[195]  K. Rohr Increase of seismic velocities in upper oceanic crust and hydrothermal circulation in the Juan de Fuca plate , 1994 .

[196]  R. Zierenberg,et al.  Genesis of massive sulfide deposits on a sediment-covered spreading center, Escanaba Trough, southern Gorda Ridge , 1993 .

[197]  R. Embley,et al.  High‐resolution studies of the summit of Axial Volcano , 1990 .

[198]  P. Rona,et al.  Geochronology of TAG and Snakepit hydrothermal fields, Mid-Atlantic Ridge: witness to a long and complex hydrothermal history , 1990 .

[199]  M. Mottl,et al.  Geologic form and setting of a hydrothermal vent field at lat 10°56′N, East Pacific Rise: A detailed study using Angus and Alvin , 1986 .

[200]  H. Craig,et al.  Methane, Hydrogen and Helium in Hydrothermal Fluids at 21°N on the East Pacific Rise , 1983 .

[201]  J. McClain,et al.  Seismicity and tremor in a submarine hydrothermal field: the northern Juan De Fuca Ridge , 1993 .

[202]  W. Ridley,et al.  Hydrothermal alteration in oceanic ridge volcanics: A detailed study at the Galapagos Fossil Hydrothermal Field , 1995 .