The minimum number of vertices in uniform hypergraphs with given domination number

Abstract The domination number γ ( H ) of a hypergraph H = ( V ( H ) , E ( H ) ) is the minimum size of a subset D ⊂ V ( H ) of the vertices such that for every v ∈ V ( H ) ∖ D there exist a vertex d ∈ D and an edge H ∈ E ( H ) with v , d ∈ H . We address the problem of finding the minimum number n ( k , γ ) of vertices that a k -uniform hypergraph H can have if γ ( H ) ≥ γ and H does not contain isolated vertices. We prove that n ( k , γ ) = k + Θ ( k 1 − 1 ∕ γ ) and also consider the s -wise dominating and the distance- l dominating version of the problem. In particular, we show that the minimum number n d c ( k , γ , l ) of vertices that a connected k -uniform hypergraph with distance- l domination number γ can have isroughly k γ l 2 .

[1]  Michael A. Henning,et al.  Distance domination in graphs with given minimum and maximum degree , 2017, J. Comb. Optim..

[2]  Bibin K. Jose,et al.  HYPERGRAPH DOMINATION AND STRONG INDEPENDENCE , 2009 .

[3]  Peter J. Slater,et al.  Fundamentals of domination in graphs , 1998, Pure and applied mathematics.

[4]  Michael A. Henning,et al.  Distance Domination in Graphs , 2017, Topics in Domination in Graphs.

[5]  S. Hedetniemi,et al.  Domination in graphs : advanced topics , 1998 .

[6]  Csilla Bujtás,et al.  Transversals and domination in uniform hypergraphs , 2012, Eur. J. Comb..

[7]  J. Moon,et al.  Relations between packing and covering numbers of a tree , 1975 .

[8]  Michael A. Henning,et al.  Hypergraphs with large domination number and with edge sizes at least three , 2012, Discret. Appl. Math..

[9]  Csilla Bujtás,et al.  Equality of domination and transversal numbers in hypergraphs , 2013, Discret. Appl. Math..

[10]  Zsolt Tuza,et al.  Critical hypergraphs and intersecting set-pair systems , 1985, J. Comb. Theory B.

[11]  Balázs Keszegh,et al.  Finding a majority ball with majority answers , 2015, Electron. Notes Discret. Math..

[12]  J. Hirschfeld Projective Geometries Over Finite Fields , 1980 .

[13]  Dennis Saleh Zs , 2001 .

[14]  Zoltán Lóránt Nagy,et al.  On the number of maximal intersecting k-uniform families and further applications of Tuza's set pair method , 2015, 1501.00648.

[15]  Frank Harary,et al.  Nordhaus-Gaddum inequalities for domination in graphs , 1996, Discret. Math..

[16]  Csilla Bujtás,et al.  Total Transversals and Total Domination in Uniform Hypergraphs , 2014, Electron. J. Comb..

[17]  Zsolt Tuza,et al.  Inequalities for two set systems with prescribed intersections , 1987, Graphs Comb..

[18]  Michael S. Jacobson,et al.  On n-domination, n-dependence and forbidden subgraphs , 1985 .

[19]  Bibin K Jose Domination in hypergraphs , 2011 .

[20]  B. D. Acharya Domination in Hypergraphs , 2020 .

[21]  Michael A. Henning,et al.  Lower Bounds on the Distance Domination Number of a Graph , 2015, Contributions Discret. Math..