Biogeography-based particle swarm optimization with fuzzy elitism and its applications to constrained engineering problems

In evolutionary algorithms, elites are crucial to maintain good features in solutions. However, too many elites can make the evolutionary process stagnate and cannot enhance the performance. This article employs particle swarm optimization (PSO) and biogeography-based optimization (BBO) to propose a hybrid algorithm termed biogeography-based particle swarm optimization (BPSO) which could make a large number of elites effective in searching optima. In this algorithm, the whole population is split into several subgroups; BBO is employed to search within each subgroup and PSO for the global search. Since not all the population is used in PSO, this structure overcomes the premature convergence in the original PSO. Time complexity analysis shows that the novel algorithm does not increase the time consumption. Fourteen numerical benchmarks and four engineering problems with constraints are used to test the BPSO. To better deal with constraints, a fuzzy strategy for the number of elites is investigated. The simulation results validate the feasibility and effectiveness of the proposed algorithm.

[1]  Jürgen Branke,et al.  Survey: State of the Art , 2002 .

[2]  Andries Petrus Engelbrecht,et al.  A Cooperative approach to particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[3]  Kamran Zamanifar,et al.  Improvement of harmony search algorithm by using statistical analysis , 2011, Artificial Intelligence Review.

[4]  V. Sadasivam,et al.  PARTICLE SWARM OPTIMIZATION-BASED FEATURE SELECTION AND PARAMETER OPTIMIZATION FOR POWER SYSTEM DISTURBANCES CLASSIFICATION , 2012, Appl. Artif. Intell..

[5]  Hongliang Ren,et al.  Cross-Layer Optimization Schemes for Wireless Biosensor Networks , 2006, 2006 6th World Congress on Intelligent Control and Automation.

[6]  Thomas Stützle,et al.  Ant Colony Optimization , 2009, EMO.

[7]  Mauro Birattari,et al.  Swarm Intelligence , 2012, Lecture Notes in Computer Science.

[8]  Johnny Siaw Paw Koh,et al.  A hybrid artificial immune systems for multimodal function optimization and its application in engineering problem , 2012, Artificial Intelligence Review.

[9]  S. Rahnamayan,et al.  Efficiency competition on N-queen problem: DE vs. CMA-ES , 2008, 2008 Canadian Conference on Electrical and Computer Engineering.

[10]  S. N. Kramer,et al.  An Augmented Lagrange Multiplier Based Method for Mixed Integer Discrete Continuous Optimization and Its Applications to Mechanical Design , 1994 .

[11]  Yong Wang,et al.  A Multiobjective Optimization-Based Evolutionary Algorithm for Constrained Optimization , 2006, IEEE Transactions on Evolutionary Computation.

[12]  S. Wu,et al.  GENETIC ALGORITHMS FOR NONLINEAR MIXED DISCRETE-INTEGER OPTIMIZATION PROBLEMS VIA META-GENETIC PARAMETER OPTIMIZATION , 1995 .

[13]  Feng Gao,et al.  Developing a second nearest-neighbor modified embedded atom method interatomic potential for lithium , 2011 .

[14]  Y. Rahmat-Samii,et al.  Particle swarm optimization in electromagnetics , 2004, IEEE Transactions on Antennas and Propagation.

[15]  Y. J. Cao,et al.  Evolutionary programming , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[16]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms for Constrained Parameter Optimization Problems , 1996, Evolutionary Computation.

[17]  Riccardo Poli,et al.  Particle Swarms: The Second Decade , 2008 .

[18]  T. S. Jeyali Laseetha,et al.  Investigations on the synthesis of uniform linear antenna array using biogeography-based optimisation techniques , 2012, Int. J. Bio Inspired Comput..

[19]  K. Lee,et al.  A new metaheuristic algorithm for continuous engineering optimization : harmony search theory and practice , 2005 .

[20]  Carlos A. Coello Coello,et al.  THEORETICAL AND NUMERICAL CONSTRAINT-HANDLING TECHNIQUES USED WITH EVOLUTIONARY ALGORITHMS: A SURVEY OF THE STATE OF THE ART , 2002 .

[21]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[22]  Surender Dahiya,et al.  Application of Biogeography-based Optimization for Economic Dispatch Problems , 2012 .

[23]  Hans-Georg Beyer,et al.  The Theory of Evolution Strategies , 2001, Natural Computing Series.

[24]  Dan Simon,et al.  Biogeography-Based Optimization , 2022 .

[25]  Ying Tan,et al.  Light responsive curve selection for photosynthesis operator of APOA , 2012, Int. J. Bio Inspired Comput..

[26]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[27]  Ian C. Parmee,et al.  Evolutionary and adaptive computing in engineering design , 2001 .

[28]  Taher Niknam,et al.  A NEW HYBRID EVOLUTIONARY OPTIMIZATION ALGORITHM FOR DISTRIBUTION FEEDER RECONFIGURATION , 2011, Appl. Artif. Intell..

[29]  Riccardo Poli,et al.  Analysis of the publications on the applications of particle swarm optimisation , 2008 .

[30]  Akira Ikuta,et al.  Editorial: Hybrid Techniques in AI , 2008, Artificial Intelligence Review.

[31]  Carlos A. Coello Coello,et al.  A simple multimembered evolution strategy to solve constrained optimization problems , 2005, IEEE Transactions on Evolutionary Computation.

[32]  Andrew J. Chipperfield,et al.  Simplifying Particle Swarm Optimization , 2010, Appl. Soft Comput..

[33]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[34]  Chun Zhang,et al.  ON MIXED-DISCRETE NONLINEAR OPTIMIZATION PROBLEMS: A COMPARATIVE STUDY , 1995 .

[35]  Haiping Ma,et al.  An analysis of the equilibrium of migration models for biogeography-based optimization , 2010, Inf. Sci..

[36]  Rakesh Angira,et al.  Optimization Of Water Pumping System Using Differential Evolution Strategies , 2003 .

[37]  Xin Yao,et al.  Evolutionary programming made faster , 1999, IEEE Trans. Evol. Comput..

[38]  H. Loh,et al.  A Sequential Linearization Approach for Solving Mixed-Discrete Nonlinear Design Optimization Problems , 1991 .

[39]  Kay Chen Tan,et al.  On solving multiobjective bin packing problems using evolutionary particle swarm optimization , 2008, Eur. J. Oper. Res..

[40]  R. Storn,et al.  Differential Evolution , 2004 .

[41]  Linus Schrage,et al.  Modeling and Optimization With Gino , 1986 .

[42]  David B. Fogel,et al.  Evolutionary Computation: The Fossil Record , 1998 .

[43]  Dan Simon,et al.  Analysis of migration models of biogeography-based optimization using Markov theory , 2011, Eng. Appl. Artif. Intell..

[44]  Zbigniew Michalewicz,et al.  Evolutionary algorithms for constrained engineering problems , 1996, Computers & Industrial Engineering.

[45]  Bijaya K. Panigrahi,et al.  Modified biogeography-based optimisation (MBBO) , 2011, Int. J. Bio Inspired Comput..

[46]  Liping Xie,et al.  Selection strategies for gravitational constant G in artificial physics optimisation based on analysis of convergence properties , 2012, Int. J. Bio Inspired Comput..

[47]  Ganapathy Kanthaswamy,et al.  CONTROL OF DEAD-TIME SYSTEMS USING HYBRID ANT COLONY OPTIMIZATION , 2011, Appl. Artif. Intell..

[48]  Zhihua Cui,et al.  A second nearest-neighbor embedded atom method interatomic potential for Li-Si alloys , 2012 .

[49]  Russell C. Eberhart,et al.  chapter seven – The Particle Swarm , 2001 .

[50]  Dan Simon,et al.  A Probabilistic Analysis of a Simplified Biogeography-Based Optimization Algorithm , 2011, Evolutionary Computation.

[51]  Pei-Chann Chang,et al.  Dynamic diversity control in genetic algorithm for mining unsearched solution space in TSP problems , 2010, Expert Syst. Appl..

[52]  David B. Fogel,et al.  Evolutionary algorithms in theory and practice , 1997, Complex.

[53]  K. Lee,et al.  A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice , 2005 .

[54]  前田赖人 System for endoscopic surgery , 2012 .

[55]  R. G. Fenton,et al.  A MIXED INTEGER-DISCRETE-CONTINUOUS PROGRAMMING METHOD AND ITS APPLICATION TO ENGINEERING DESIGN OPTIMIZATION , 1991 .

[56]  Dervis Karaboga,et al.  The Artificial Bee Colony algorithm in layer optimization for the maximum fundamental frequency of symmetrical laminated composite plates , 2014 .

[57]  R. Poli An Analysis of Publications on Particle Swarm Optimisation Applications , 2007 .

[58]  Carlos Artemio Coello-Coello,et al.  Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art , 2002 .

[59]  E. Sandgren,et al.  Nonlinear Integer and Discrete Programming in Mechanical Design Optimization , 1990 .

[60]  Kalyanmoy Deb,et al.  Optimal design of a welded beam via genetic algorithms , 1991 .

[61]  M. Fesanghary,et al.  An improved harmony search algorithm for solving optimization problems , 2007, Appl. Math. Comput..

[62]  M. Jaberipour,et al.  Two improved harmony search algorithms for solving engineering optimization problems , 2010 .

[63]  Carlos A. Coello Coello,et al.  Use of a self-adaptive penalty approach for engineering optimization problems , 2000 .

[64]  Kevin M. Passino,et al.  Swarm Stability and Optimization , 2011 .

[65]  P. R. Drake,et al.  A NEW EXPERIMENTAL STUDY OF GENETIC ALGORITHM AND SIMULATED ANNEALING WITH BOUNDED VARIABLES , 2011, Appl. Artif. Intell..

[66]  Peter Kazanzides,et al.  Multisensor Data Fusion in an Integrated Tracking System for Endoscopic Surgery , 2012, IEEE Transactions on Information Technology in Biomedicine.

[67]  Qidi Wu,et al.  An analysis of the migration rates for biogeography-based optimization , 2014, Inf. Sci..

[68]  Dan Simon,et al.  Markov Models for Biogeography-Based Optimization , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).