Machine Learning Applied to Quantum Synchronization‐Assisted Probing

A probing scheme is considered with an accessible and controllable qubit, used to probe an out-of equilibrium system consisting of a second qubit interacting with an environment. Quantum spontaneous synchronization between the probe and the system emerges in this model and, by tuning the probe frequency, can occur both in-phase and in anti-phase. We analyze the capability of machine learning in this probing scheme based on quantum synchronization. An artificial neural network is used to infer, from a probe observable, main dissipation features, such as the environment Ohmicity index. The efficiency of the algorithm in the presence of some noise in the dataset is also considered. We show that the performance in either classification and regression is significantly improved due to the in/anti-phase synchronization transition. This opens the way to the characterization of environments with arbitrary spectral densities.

[1]  Probing the environment of an inaccessible system by a qubit ancilla , 2010 .

[2]  Karyn Le Hur,et al.  Dynamics, synchronization, and quantum phase transitions of two dissipative spins , 2010, 1007.2857.

[3]  R. Vasile,et al.  On the spectral origin of non-Markovianity: an exact finite model , 2013, 1311.2923.

[4]  H. Tang,et al.  Photonic cavity synchronization of nanomechanical oscillators. , 2013, Physical review letters.

[5]  Frank K. Wilhelm,et al.  Characterization of decohering quantum systems: Machine learning approach , 2015, 1510.05655.

[6]  J. Eisert,et al.  Observation of non-Markovian micromechanical Brownian motion , 2013, Nature Communications.

[7]  Jacob biamonte,et al.  Quantum machine learning , 2016, Nature.

[8]  Mario Krenn,et al.  Active learning machine learns to create new quantum experiments , 2017, Proceedings of the National Academy of Sciences.

[9]  Vedika Khemani,et al.  Machine Learning Out-of-Equilibrium Phases of Matter. , 2017, Physical review letters.

[10]  K. Brown,et al.  Coupled quantized mechanical oscillators , 2010, Nature.

[11]  R. Feynman Simulating physics with computers , 1999 .

[12]  Roger G. Melko,et al.  Machine learning phases of matter , 2016, Nature Physics.

[13]  J. Rarity,et al.  Experimental quantum Hamiltonian learning , 2017, Nature Physics.

[14]  A Mari,et al.  Measures of quantum synchronization in continuous variable systems. , 2013, Physical review letters.

[15]  Kevin P. Murphy,et al.  Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.

[16]  Michael J. Biercuk,et al.  Prediction and real-time compensation of qubit decoherence via machine learning , 2016, Nature Communications.

[17]  E. Bagan,et al.  Quantum learning without quantum memory , 2011, Scientific Reports.

[18]  Gerardo Adesso,et al.  Lectures on General Quantum Correlations and their Applications , 2017 .

[19]  G. Palma,et al.  Quantum synchronization as a local signature of super- and subradiance , 2016, 1612.07134.

[20]  M. Neeley Process Tomography of Quantum Memory in a Josephson Phase Qubit , 2008 .

[21]  Harry Buhrman,et al.  The quantum technologies roadmap: a European community view , 2018, New Journal of Physics.

[22]  Jürgen Kurths,et al.  Synchronization: Phase locking and frequency entrainment , 2001 .

[23]  D. Cory,et al.  Hamiltonian learning and certification using quantum resources. , 2013, Physical review letters.

[24]  P. Manju,et al.  Fast machine-learning online optimization of ultra-cold-atom experiments , 2015, Scientific Reports.

[25]  Hans-J. Briegel,et al.  Machine learning \& artificial intelligence in the quantum domain , 2017, ArXiv.

[26]  R. Zambrini,et al.  Dynamical and quantum effects of collective dissipation in optomechanical systems , 2017, 1706.00253.

[27]  Michael I. Jordan,et al.  Machine learning: Trends, perspectives, and prospects , 2015, Science.

[28]  Pere Colet,et al.  Quantum correlations and mutual synchronization , 2011, 1105.4129.

[29]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[30]  M. Lewenstein,et al.  Ultracold atoms in optical lattices , 2012 .

[31]  M. Holland,et al.  Synchronization of two ensembles of atoms. , 2013, Physical review letters.

[32]  Emilio Hernández-García,et al.  Synchronization, quantum correlations and entanglement in oscillator networks , 2013, Scientific Reports.

[33]  A. Zeilinger,et al.  Automated Search for new Quantum Experiments. , 2015, Physical review letters.

[34]  P. Simon Too Big to Ignore: The Business Case for Big Data , 2013 .

[35]  Roberta Zambrini,et al.  Quantum Correlations and Synchronization Measures , 2016, 1610.05060.

[36]  M. Paris,et al.  Minimal model for spontaneous quantum synchronization , 2016, 1607.07277.

[37]  G'eraldine Haack,et al.  Markovian master equations for quantum thermal machines: local versus global approach , 2017, 1707.09211.

[38]  Barry C. Sanders,et al.  Learning in quantum control: High-dimensional global optimization for noisy quantum dynamics , 2016, Neurocomputing.

[39]  Geoffrey E. Hinton Connectionist Learning Procedures , 1989, Artif. Intell..

[40]  H. Nakazato,et al.  Synchronizing quantum harmonic oscillators through two-level systems , 2017, 1705.04667.

[41]  Jens Koch,et al.  Coupling superconducting qubits via a cavity bus , 2007, Nature.

[42]  Masahide Sasaki,et al.  Quantum learning and universal quantum matching machine , 2002 .

[43]  F. Petruccione,et al.  An introduction to quantum machine learning , 2014, Contemporary Physics.

[44]  A. Leggett,et al.  Dynamics of the dissipative two-state system , 1987 .

[45]  Harry Buhrman,et al.  The European Quantum Technologies Roadmap , 2017, 1712.03773.

[46]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[47]  R. Zambrini,et al.  Probing the spectral density of a dissipative qubit via quantum synchronization , 2016, 1607.02912.

[48]  Michael J. Biercuk,et al.  Machine Learning for Predictive Estimation of Qubit Dynamics Subject to Dephasing , 2017, Physical Review Applied.

[49]  Roberta Zambrini,et al.  Avoiding dissipation in a system of three quantum harmonic oscillators , 2013, 1304.2200.

[50]  F. Plastina,et al.  Spontaneous synchronization and quantum correlation dynamics of open spin systems , 2013, 1305.1816.

[51]  Alexander Hentschel,et al.  Machine learning for precise quantum measurement. , 2009, Physical review letters.

[52]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[53]  V. Giovannetti,et al.  Mutual information as an order parameter for quantum synchronization , 2014, 1412.2585.

[54]  I. D. Vega,et al.  Dynamics of non-Markovian open quantum systems , 2017 .