Microindentation on the porous copper surface modulations

[1]  S. Wurster,et al.  Correlative microstructure and topography informed nanoindentation of copper films , 2016 .

[2]  H. Liao,et al.  Cold gas dynamic spraying of a novel micro-alloyed copper: Microstructure, mechanical properties , 2016 .

[3]  D. Jarzabek,et al.  Decrease of Nano-hardness at Ultra-low Indentation Depths in Copper Single Crystal , 2016 .

[4]  B. S. Murty,et al.  Micro and nano indentation studies on Zr60Cu10Al15Ni15 bulk metallic glass , 2015 .

[5]  S. Bull,et al.  A comparison of nanoindentation pile-up in bulk materials and thin films , 2014 .

[6]  D. Jarzabek,et al.  Depth Dependence of Nanoindentation Pile-Up Patterns in Copper Single Crystals , 2014, Metallurgical and Materials Transactions A.

[7]  Ajit Achuthan,et al.  The effect of work-hardening and pile-up on nanoindentation measurements , 2014, Journal of Materials Science.

[8]  F. Borodich The Hertz-Type and Adhesive Contact Problems for Depth-Sensing Indentation , 2014 .

[9]  Johan Liu,et al.  Investigation on interaction between indium based thermal interface material and copper and silicon substrates , 2013, 2013 Eurpoean Microelectronics Packaging Conference (EMPC).

[10]  Wenya Li,et al.  Investigation on mechanical property of annealed copper particles and cold sprayed copper coating by a micro-indentation testing , 2013 .

[11]  K. Bouzakis,et al.  Fast determination of parameters describing manufacturing imperfections and operation wear of nanoindenter tips , 2013 .

[12]  E. Koumoulos,et al.  Structural and nanomechanical properties of a zeolite membrane measured using nanoindentation , 2012 .

[13]  I. Sridhar,et al.  Indentation response of single-crystal copper using rate-independent crystal plasticity , 2011 .

[14]  M. Koç,et al.  Effect of Sintering Temperature on the Porosity and Microhardness of the Micro-Scale 3-D Porous Gradient Surfaces , 2011 .

[15]  L. Geng,et al.  Effect of Heat Input Conditions on Microstructure and Mechanical Properties of Friction-Stir-Welded Pure Copper , 2010 .

[16]  M. Kaviany,et al.  Microscale-modulated porous coatings: fabrication and pool-boiling heat transfer performance , 2010 .

[17]  M. Sarcar,et al.  Studies on cold workability limits of pure copper using machine vision system and its finite element analysis , 2009 .

[18]  M. Kaviany,et al.  2-D and 3-D modulated porous coatings for enhanced pool boiling , 2009 .

[19]  R. Klassen,et al.  Effect of copper addition and heat treatment on the depth dependence of the nanoindentation creep of aluminum at 300 K , 2009 .

[20]  C. J. Tyne,et al.  Correlation of Yield Strength and Tensile Strength with Hardness for Steels , 2008, Journal of Materials Engineering and Performance.

[21]  Yu-Cheng Lin,et al.  Finite-element analysis of the mechanical behavior of Au/Cu and Cu/Au multilayers on silicon substrate under nanoindentation , 2008 .

[22]  Nagahisa Ogasawara,et al.  On the uniqueness of measuring elastoplastic properties from indentation: The indistinguishable mystical materials , 2007 .

[23]  A. C. Fischer-Cripps,et al.  Critical review of analysis and interpretation of nanoindentation test data , 2006 .

[24]  G. Pharr,et al.  Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology , 2004 .

[25]  F. Riley,et al.  The influence of sintering additives on the indentation response of liquid-phase-sintered polycrystalline aluminas , 2002 .

[26]  J. Vlassak,et al.  Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments , 1998 .

[27]  C. Lenardi,et al.  Simulation of Berkovich nanoindentation experiments on thin films using finite element method , 1998 .

[28]  R. German Sintering theory and practice , 1996 .

[29]  Mechanical Behavior , Testing , and Manufacturing Properties of Materials 2 , 2022 .