Optimal Option Portfolio Strategies: Deepening the Puzzle of Index Option Mispricing

Traditional methods of asset allocation (such as mean–variance optimization) are not adequate for option portfolios because the distribution of returns is non-normal and the short sample of option returns available makes it difficult to estimate their distribution. We propose a method to optimize a portfolio of European options, held to maturity, with a myopic objective function that overcomes these limitations. In an out-of-sample exercise incorporating realistic transaction costs, the portfolio strategy delivers a Sharpe ratio of 0.82 with positive skewness. This performance is mostly obtained by exploiting mispricing between options and not by loading on jump or volatility risk premia.

[1]  E. Thorp,et al.  The Cost of Liquidity Services in Listed Options: A Note , 1983 .

[2]  F. Diebold,et al.  Pitfalls and Opportunities in the Use of Extreme Value Theory in Risk Management , 1998 .

[3]  W. Newey,et al.  A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelationconsistent Covariance Matrix , 1986 .

[4]  G. Constantinides,et al.  The Puzzle of Index Option Returns , 2012 .

[5]  Michael W. Brandt Estimating Portfolio and Consumption Choice: A Conditional Euler Equations Approach , 1999 .

[6]  Viktor Todorov,et al.  Variance Risk-Premium Dynamics: The Role of Jumps , 2010 .

[7]  W. Fung,et al.  Empirical Characteristics of Dynamic Trading Strategies: The Case of Hedge Funds , 1997 .

[8]  Oleg Bondarenko,et al.  Why are Put Options so Expensive? , 2003 .

[9]  Alan G. White,et al.  INCORPORATING VOLATILITY UPDATING INTO THE HISTORICAL SIMULATION METHOD FOR VALUE AT RISK , 1998 .

[10]  Pascal J. Maenhout,et al.  The World Price of Jump and Volatility Risk , 2006 .

[11]  Clifford W. Smith,et al.  Trading costs for listed options: The implications for market efficiency , 1980 .

[12]  Raj Varma,et al.  Contracting in the investment management industry: *1: evidence from mutual funds , 2002 .

[13]  R. Engle,et al.  A GARCH Option Pricing Model with Filtered Historical Simulation , 2008 .

[14]  The performance of model based option trading strategies , 2013 .

[15]  Giovanni Barone-Adesi,et al.  VaR without correlations for portfolios of derivative securities , 1999 .

[16]  G. Barone-Adesi VaR Without Correlations for Nonlinear Portfolios , 1998 .

[17]  Michael S. Johannes,et al.  Model Specification and Risk Premia: Evidence from Futures Options , 2005 .

[18]  Tyler Shumway,et al.  Expected Option Returns , 2000 .

[19]  Jun Pan The Jump-Risk Premia Implicit in Options : Evidence from an Integrated Time-Series Study , 2001 .

[20]  G. Vilkov,et al.  Portfolio Policies with Stock Options , 2008 .

[21]  Peter F. Christoffersen,et al.  Capturing Option Anomalies with a Variance-Dependent Pricing Kernel , 2011 .

[22]  Jun Pan The jump-risk premia implicit in options: evidence from an integrated time-series study $ , 2002 .

[23]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[24]  Victor DeMiguel,et al.  Optimal Versus Naive Diversification: How Inefficient is the 1/N Portfolio Strategy? , 2009 .

[25]  Gurdip Bakshi,et al.  Empirical Performance of Alternative Option Pricing Models , 1997 .

[26]  R. Bliss,et al.  Option-Implied Risk Aversion Estimates , 2004 .

[27]  W. Newey,et al.  A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelationconsistent Covariance Matrix , 1986 .

[28]  S. Ross Options and Efficiency , 1976 .

[29]  Luca Benzoni,et al.  An Empirical Investigation of Continuous-Time Equity Return Models , 2001 .

[30]  Stewart Mayhew,et al.  Microstructural biases in empirical tests of option pricing models , 2006 .

[31]  Joel M. Vanden Options Trading and the CAPM , 2004 .

[32]  Jun Liu,et al.  Dynamic Derivative Strategies , 2002 .

[33]  David A. Chapman,et al.  Why constrain your mutual fund manager , 2004 .

[34]  Sinan Tan The Role of Options in Long Horizon Portfolio Choice , 2007 .

[35]  Alessio Saretto,et al.  Option Strategies: Good Deals and Margin Calls , 2006 .

[36]  G. Aragon,et al.  A Unique View of Hedge Fund Derivatives Usage: Safeguard or Speculation? , 2012 .

[37]  Yong Chen,et al.  Derivatives Use and Risk Taking: Evidence from the Hedge Fund Industry , 2010, Journal of Financial and Quantitative Analysis.

[38]  Pedro Santa-Clara,et al.  Parametric Portfolio Policies: Exploiting Characteristics in the Cross Section of Equity Returns , 2004 .

[39]  Sheridan Titman,et al.  On Persistence in Mutual Fund Performance , 1997 .

[40]  G. Box,et al.  On a measure of lack of fit in time series models , 1978 .

[41]  Pascal J. Maenhout,et al.  An Empirical Portfolio Perspective on Option Pricing Anomalies , 2007 .

[42]  Jun-Ping Liua,et al.  Dynamic Derivative Strategies , 2001 .

[43]  S. Malamud Portfolio Selection with Options and Transaction Costs , 2014 .

[44]  Peter Christoffersen,et al.  Capturing Option Anomalies with a Variance-Dependent Pricing Kernel , 2013 .

[45]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[46]  C. S. Jones A Nonlinear Factor Analysis of S&P 500 Index Option Returns , 2001 .

[47]  David A. Chapman,et al.  Why Constrain Your Mutual Fund Manager? , 2002 .

[48]  E. Ghysels,et al.  A study towards a unified approach to the joint estimation of objective and risk neutral measures for the purpose of options valuation , 2000 .

[49]  J. Jackwerth Recovering Risk Aversion from Option Prices and Realized Returns , 1998 .

[50]  J. Jackwerth,et al.  The Price of a Smile: Hedging and Spanning in Option Markets , 2001 .

[51]  Olivier Ledoit,et al.  Gain, Loss, and Asset Pricing , 2000, Journal of Political Economy.

[52]  M. Halling,et al.  Aggregate Jump and Volatility Risk in the Cross-Section of Stock Returns , 2014 .

[53]  Richard O. Michaud,et al.  Estimation Error and Portfolio Optimization: A Resampling Solution , 2007 .

[54]  H. Shin,et al.  Liquidity and Leverage , 2009 .

[55]  J. Moody,et al.  Decision Technologies for Computational Finance , 1998 .

[56]  David S. Bates Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options , 1998 .

[57]  D. Duffie,et al.  Transform Analysis and Asset Pricing for Affine Jump-Diffusions , 1999 .

[58]  David S. Bates Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Thephlx Deutschemark Options , 1993 .

[59]  Bjørn Eraker Do Stock Prices and Volatility Jump? Reconciling Evidence from Spot and Option Prices , 2004 .

[60]  Amit Goyal,et al.  Cross-Section of Option Returns and Volatility , 2009 .

[61]  Michael S. Johannes,et al.  Understanding Index Option Returns , 2007 .

[62]  William N. Goetzmann,et al.  Portfolio Performance Manipulation and Manipulation-Proof Performance Measures , 2004 .

[63]  Michael Halling,et al.  Aggregate Jump and Volatility Risk in the Cross-Section of Stock Returns , 2015 .

[64]  Jeffrey Pontiff,et al.  How Are Derivatives Used? Evidence from the Mutual Fund Industry , 1999 .