Distribution-based Bisimulation and Bisimulation Metric in Probabilistic Automata

Probabilistic automata were introduced by Rabin in 1963 as language acceptors. Two automata are equivalent if and only if they accept each word with the same probability. On the other side, in the process algebra community, probabilistic automata were re-proposed by Segala in 1995 which are more general than Rabin's automata. Bisimulations have been proposed for Segala's automata to characterize the equivalence between them. So far the two notions of equivalences and their characteristics have been studied mostly independently. In this paper, we consider Segala's automata, and propose a novel notion of distribution-based bisimulation by joining the existing equivalence and bisimilarities. We demonstrate the utility of our definition by studying distribution-based bisimulation metrics, which gives rise to a robust notion of equivalence for Rabin's automata. We compare our notions of bisimulation to some existing distribution-based bisimulations and discuss their compositionality and relations to trace equivalence. Finally, we show the decidability and complexity of all relations.

[1]  Carroll Morgan,et al.  Testing Finitary Probabilistic Processes , 2009, CONCUR.

[2]  Roberto Segala,et al.  Decision Algorithms for Probabilistic Bisimulation , 2002, CONCUR.

[3]  Lijun Zhang,et al.  Late Weak Bisimulation for Markov Automata , 2012, ArXiv.

[4]  Frits W. Vaandrager,et al.  Root Contention in IEEE 1394 , 1999, ARTS.

[5]  James Worrell,et al.  Approximating a Behavioural Pseudometric without Discount for Probabilistic Systems , 2007, Log. Methods Comput. Sci..

[6]  Lijun Zhang,et al.  Flow Faster: Efficient Decision Algorithms for Probabilistic Simulations , 2007, Log. Methods Comput. Sci..

[7]  Pedro R. D'Argenio,et al.  Quantitative Model Checking Revisited: Neither Decidable Nor Approximable , 2007, FORMATS.

[8]  François Laviolette,et al.  Approximate Analysis of Probabilistic Processes: Logic, Simulation and Games , 2008, 2008 Fifth International Conference on Quantitative Evaluation of Systems.

[9]  Kim G. Larsen,et al.  Bisimulation through Probabilistic Testing , 1991, Inf. Comput..

[10]  Roberto Segala,et al.  Logical Characterizations of Bisimulations for Discrete Probabilistic Systems , 2007, FoSSaCS.

[11]  Scott A. Smolka,et al.  Algebraic Reasoning for Probabilistic Concurrent Systems , 1990, Programming Concepts and Methods.

[12]  Nancy A. Lynch,et al.  Probabilistic Simulations for Probabilistic Processes , 1994, Nord. J. Comput..

[13]  D. Parker Verification of Probabilistic Real-time Systems , 2013 .

[14]  Hongfei Fu,et al.  Computing Game Metrics on Markov Decision Processes , 2012, ICALP.

[15]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[16]  Azaria Paz,et al.  Probabilistic automata , 2003 .

[17]  R. Bellman Dynamic programming. , 1957, Science.

[18]  Marta Z. Kwiatkowska,et al.  PRISM 4.0: Verification of Probabilistic Real-Time Systems , 2011, CAV.

[19]  Joël Ouaknine,et al.  Language Equivalence for Probabilistic Automata , 2011, CAV.

[20]  Mingsheng Ying Topology in process calculus - approximate correctness and infinite evolution of concurrent programs , 2001 .

[21]  Klaudia Frankfurter Computers And Intractability A Guide To The Theory Of Np Completeness , 2016 .

[22]  Krishnendu Chatterjee,et al.  Algorithms for Game Metrics (Full Version) , 2008, Log. Methods Comput. Sci..

[23]  Mingsheng Ying Bisimulation indexes and their applications , 2002, Theor. Comput. Sci..

[24]  Christel Baier,et al.  Probabilistic ω-automata , 2012, JACM.

[25]  Christel Baier,et al.  Deciding Bisimilarity and Similarity for Probabilistic Processes , 2000, J. Comput. Syst. Sci..

[26]  Christian N. S. Pedersen,et al.  The consensus string problem and the complexity of comparing hidden Markov models , 2002, J. Comput. Syst. Sci..

[27]  Kim G. Larsen,et al.  On-the-Fly Exact Computation of Bisimilarity Distances , 2013, TACAS.

[28]  Markus Siegle,et al.  Markov Automata: Deciding weak bisimulation by means of non-naïvely vanishing states , 2012, Inf. Comput..

[29]  Rocco De Nicola,et al.  A uniform framework for modeling nondeterministic, probabilistic, stochastic, or mixed processes and their behavioral equivalences , 2013, Inf. Comput..

[30]  Radha Jagadeesan,et al.  Metrics for Labeled Markov Systems , 1999, CONCUR.

[31]  Mathieu Tracol,et al.  Computing Distances between Probabilistic Automata , 2011, QAPL.

[32]  Joël Ouaknine,et al.  On the Complexity of the Equivalence Problem for Probabilistic Automata , 2011, FoSSaCS.

[33]  James Worrell,et al.  On the Complexity of Computing Probabilistic Bisimilarity , 2012, FoSSaCS.

[34]  Doina Precup,et al.  Bisimulation Metrics for Continuous Markov Decision Processes , 2011, SIAM J. Comput..

[35]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[36]  Holger Hermanns,et al.  Deciding Probabilistic Automata Weak Bisimulation in Polynomial Time , 2012, FSTTCS.

[37]  Lijun Zhang,et al.  Bisimulations Meet PCTL Equivalences for Probabilistic Automata , 2011, CONCUR.

[38]  Lijun Zhang,et al.  On Probabilistic Automata in Continuous Time , 2010, 2010 25th Annual IEEE Symposium on Logic in Computer Science.

[39]  Nicolás Wolovick,et al.  Nondeterministic Labeled Markov Processes: Bisimulations and Logical Characterization , 2009, 2009 Sixth International Conference on the Quantitative Evaluation of Systems.

[40]  Radha Jagadeesan,et al.  Weak bisimulation is sound and complete for pCTL* , 2002, Inf. Comput..

[41]  Lijun Zhang,et al.  Deciding Bisimilarities on Distributions , 2013, QEST.

[42]  Silvia Crafa,et al.  Bisimulation and simulation algorithms on probabilistic transition systems by abstract interpretation , 2012, Formal Methods Syst. Des..

[43]  Mariëlle Stoelinga,et al.  An Introduction to Probabilistic Automata , 2002, Bull. EATCS.

[44]  Thomas A. Henzinger,et al.  Equivalence of Labeled Markov Chains , 2008, Int. J. Found. Comput. Sci..

[45]  Radha Jagadeesan,et al.  Metrics for labelled Markov processes , 2004, Theor. Comput. Sci..

[46]  Wen-Guey Tzeng,et al.  A Polynomial-Time Algorithm for the Equivalence of Probabilistic Automata , 1992, SIAM J. Comput..

[47]  Rupak Majumdar,et al.  Game Relations and Metrics , 2007, 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007).

[48]  Doina Precup,et al.  On-the-Fly Algorithms for Bisimulation Metrics , 2012, 2012 Ninth International Conference on Quantitative Evaluation of Systems.

[49]  Andrea Bianco,et al.  Model Checking of Probabalistic and Nondeterministic Systems , 1995, FSTTCS.

[50]  L. D. Alfaro The Verification of Probabilistic Systems Under Memoryless Partial-Information Policies is Hard , 1999 .

[51]  Azaria Paz,et al.  Introduction to probabilistic automata (Computer science and applied mathematics) , 1971 .

[52]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[53]  Lijun Zhang,et al.  Probabilistic Logical Characterization , 2011, Inf. Comput..