Iron persistence in a distal hydrothermal plume supported by dissolved-particulate exchange

[1]  E. Galbraith,et al.  How well do global ocean biogeochemistry models simulate dissolved iron distributions? , 2016 .

[2]  E. Boyle,et al.  Dissolved iron and iron isotopes in the southeastern Pacific Ocean , 2015 .

[3]  J. Adkins,et al.  Fractionation of iron isotopes during leaching of natural particles by acidic and circumneutral leaches and development of an optimal leach for marine particulate iron isotopes , 2015 .

[4]  S. John,et al.  The cycling of iron, zinc and cadmium in the North East Pacific Ocean – Insights from stable isotopes , 2015 .

[5]  C. Völker,et al.  Modeling organic iron-binding ligands in a three-dimensional biogeochemical ocean model , 2015 .

[6]  William J. Jenkins,et al.  Basin-scale transport of hydrothermal dissolved metals across the South Pacific Ocean , 2015, Nature.

[7]  E. Boyle,et al.  Partitioning of dissolved iron and iron isotopes into soluble and colloidal phases along the GA03 GEOTRACES North Atlantic Transect , 2015 .

[8]  P. Lam,et al.  Size-fractionated major particle composition and concentrations from the US GEOTRACES North Atlantic Zonal Transect , 2015 .

[9]  E. Boyle,et al.  Distal transport of dissolved hydrothermal iron in the deep South Pacific Ocean , 2014, Proceedings of the National Academy of Sciences.

[10]  E. Boyle,et al.  Assessment and comparison of Anopore and cross flow filtration methods for the determination of dissolved iron size fractionation into soluble and colloidal phases in seawater , 2014 .

[11]  D. Connelly,et al.  The importance of shallow hydrothermal island arc systems in ocean biogeochemistry , 2014 .

[12]  A. Findlay,et al.  Nanoparticulate pyrite and other nanoparticles are a widespread component of hydrothermal vent black smoker emissions , 2014 .

[13]  J. Adkins,et al.  A new method for precise determination of iron, zinc and cadmium stable isotope ratios in seawater by double-spike mass spectrometry. , 2013, Analytica chimica acta.

[14]  D. Connelly,et al.  The stabilisation and transportation of dissolved iron from high temperature hydrothermal vent systems , 2013 .

[15]  B. Baker,et al.  The microbiology of deep-sea hydrothermal vent plumes: ecological and biogeographic linkages to seafloor and water column habitats , 2013, Front. Microbiol..

[16]  V. Faure Deep circulation in the Eastern South Pacific Ocean , 2012 .

[17]  M. Saito,et al.  Basin‐scale inputs of cobalt, iron, and manganese from the Benguela‐Angola front to the South Atlantic Ocean , 2012 .

[18]  W. Sunda Feedback Interactions between Trace Metal Nutrients and Phytoplankton in the Ocean , 2012, Front. Microbio..

[19]  K. Bruland,et al.  Rapid and noncontaminating sampling system for trace elements in global ocean surveys , 2012 .

[20]  R. Sherrell,et al.  Sampling for particulate trace element determination using water sampling bottles: methodology and comparison to in situ pumps , 2012 .

[21]  P. Laan,et al.  Dissolved iron in the Arctic Ocean: Important role of hydrothermal sources, shelf input and scavenging removal , 2012 .

[22]  K. Buck,et al.  The Organic Complexation of Iron in the Marine Environment: A Review , 2012, Front. Microbio..

[23]  C. German,et al.  Size fractionation of trace metals in the Edmond hydrothermal plume, Central Indian Ocean , 2012 .

[24]  P. Laan,et al.  Dissolved iron in the Southern Ocean (Atlantic sector) , 2011 .

[25]  Christopher R. German,et al.  Dissolved and particulate organic carbon in hydrothermal plumes from the East Pacific Rise, 9°50'N , 2011 .

[26]  M. Yücel,et al.  Hydrothermal vents as a kinetically stable source of iron-sulphide-bearing nanoparticles to the ocean , 2011 .

[27]  F. Lacan,et al.  Iron isotopes in the seawater of the equatorial Pacific Ocean: New constraints for the oceanic iron cycle , 2011 .

[28]  A. Koschinsky,et al.  Metal flux from hydrothermal vents increased by organic complexation , 2011 .

[29]  M. Wells,et al.  Dissolved iron anomaly in the deep tropical-subtropical Pacific: Evidence for long-range transport of hydrothermal iron , 2011 .

[30]  A. Anbar,et al.  Fe isotope fractionation during equilibration of Fe-organic complexes. , 2010, Environmental science & technology.

[31]  D. Garbe‐Schönberg,et al.  Iron isotope fractionation in a buoyant hydrothermal plume, 5°S Mid-Atlantic Ridge , 2009 .

[32]  B. Toner Preservation of iron(II) by carbon-rich matrices in a hydrothermal plume , 2009 .

[33]  J. Baker,et al.  Equilibrium Fe isotope fractionation between inorganic aqueous Fe(III) and the siderophore complex, Fe(III)-desferrioxamine B , 2008 .

[34]  Richard A. Krishfield,et al.  Particulate organic carbon fluxes to the ocean interior and factors controlling the biological pump: A synthesis of global sediment trap programs since 1983 , 2008 .

[35]  C. German,et al.  The distribution and stabilisation of dissolved Fe in deep-sea hydrothermal plumes , 2007 .

[36]  O. Rouxel,et al.  Mass spectrometry and natural variations of iron isotopes. , 2006, Mass spectrometry reviews.

[37]  David L. Kirchman,et al.  The oceanic gel phase: a bridge in the DOM-POM continuum , 2004 .

[38]  E. Boyle,et al.  Modeling the global ocean iron cycle , 2004 .

[39]  A. Koschinsky,et al.  Uptake of elements from seawater by ferromanganese crusts: solid-phase associations and seawater speciation , 2003 .

[40]  E. Anderson,et al.  Interferometer-controlled scanning transmission X-ray microscopes at the Advanced Light Source. , 2003, Journal of synchrotron radiation.

[41]  R. Sherrell,et al.  Dissolved and particulate Fe in a hydrothermal plume at 9°45′N, East Pacific Rise:: Slow Fe (II) oxidation kinetics in Pacific plumes , 2000 .

[42]  J. Lupton Hydrothermal helium plumes in the Pacific Ocean , 1998 .

[43]  E. Baker,et al.  Hydrothermal plume particles and dissolved phosphate over the superfast-spreading southern East Pacific Rise , 1996 .

[44]  J. Cowen,et al.  Reactive trace metals in the stratified central North Pacific , 1994 .

[45]  S. Riser,et al.  A Nonconservative β-Spiral Determination of the Deep Circulation in the Eastern South Pacific , 1993 .

[46]  M. Wells,et al.  Marine submicron particles , 1992 .

[47]  C. German,et al.  Hydrothermal scavenging at the Mid-Atlantic Ridge: Modification of trace element dissolved fluxes , 1991 .

[48]  R. Feely,et al.  Scavenging rates of dissolved manganese in a hydrothermal vent plume , 1990 .

[49]  E. Baker,et al.  Bacterial scavenging of Mn and Fe in a mid- to far-field hydrothermal particle plume , 1986, Nature.

[50]  D. E. Fisher,et al.  Aluminum‐poor ferromanganoan sediments on active oceanic ridges , 1969 .

[51]  Edward D. Goldberg,et al.  Marine Geochemistry 1. Chemical Scavengers of the Sea , 1954, The Journal of Geology.

[52]  C. Lamborg,et al.  The oceanographic toolbox for the collection of sinking and suspended marine particles , 2015 .

[53]  Karl K. Turekian,et al.  Treatise on geochemistry , 2014 .

[54]  C. German 8.7 – Hydrothermal Processes , 2014 .

[55]  J. Nishioka,et al.  Evidence of an extensive spread of hydrothermal dissolved iron in the Indian Ocean , 2013 .

[56]  K. Nealson,et al.  Occurrence and Mechanisms of Microbial Oxidation of Manganese , 1988 .