Variable Selection in Bayesian Semiparametric Regression Models

In this paper we extend existing Bayesian methods for variable selection in Gaussian process regression, to select both the regression terms and the active covariates in the spatial correlation structure. We then use the estimated posterior probabilities to choose between relatively few modes through cross-validation, and consequently improve prediction.

[1]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[2]  Kenny Q. Ye,et al.  Variable Selection for Gaussian Process Models in Computer Experiments , 2006, Technometrics.

[3]  J. Ghosh,et al.  An Introduction to Bayesian Analysis: Theory and Methods , 2006 .

[4]  David M. Steinberg,et al.  Convex Combination of Gaussian Processes for Bayesian Analysis of Deterministic Computer Experiments , 2014, Technometrics.

[5]  Thomas J. Santner,et al.  The Design and Analysis of Computer Experiments , 2003, Springer Series in Statistics.

[6]  Marina Vannucci,et al.  Variable Selection for Nonparametric Gaussian Process Priors: Models and Computational Strategies. , 2011, Statistical science : a review journal of the Institute of Mathematical Statistics.

[7]  Agus Sudjianto,et al.  Blind Kriging: A New Method for Developing Metamodels , 2008 .

[8]  Yves Deville,et al.  DiceKriging, DiceOptim: Two R Packages for the Analysis of Computer Experiments by Kriging-Based Metamodeling and Optimization , 2012 .

[9]  David M. Steinberg,et al.  Data Analytic Tools for Understanding Random Field Regression Models , 2004, Technometrics.

[10]  J. Friedman,et al.  Estimating Optimal Transformations for Multiple Regression and Correlation. , 1985 .

[11]  Grace Wahba,et al.  Spline Models for Observational Data , 1990 .

[12]  Rachel T. Johnson,et al.  Design and analysis for the Gaussian process model: a Rejoinder , 2009, Qual. Reliab. Eng. Int..

[13]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[14]  J. Berger,et al.  Optimal predictive model selection , 2004, math/0406464.

[15]  Saltelli Andrea,et al.  Global Sensitivity Analysis: The Primer , 2008 .

[16]  Peter Challenor,et al.  Computational Statistics and Data Analysis the Effect of the Nugget on Gaussian Process Emulators of Computer Models , 2022 .

[17]  Edward I. George,et al.  The Practical Implementation of Bayesian Model Selection , 2001 .

[18]  Sonja Kuhnt,et al.  Design and analysis of computer experiments , 2010 .

[19]  David M. Steinberg,et al.  Optimal designs for Gaussian process models |via spectral decomposition , 2014 .

[20]  Robert B. Gramacy,et al.  Ja n 20 08 Bayesian Treed Gaussian Process Models with an Application to Computer Modeling , 2009 .

[21]  A. Tsybakov,et al.  Sparse Estimation by Exponential Weighting , 2011, 1108.5116.

[22]  Jerome Sacks,et al.  Designs for Computer Experiments , 1989 .

[23]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[24]  D G Krige,et al.  A statistical approach to some mine valuation and allied problems on the Witwatersrand , 2015 .

[25]  Carolyn Conner Seepersad,et al.  Building Surrogate Models Based on Detailed and Approximate , 2004, DAC 2004.

[26]  V. Roshan Joseph,et al.  Composite Gaussian process models for emulating expensive functions , 2012, 1301.2503.

[27]  G. Wahba Spline models for observational data , 1990 .

[28]  A. Journel,et al.  When do we need a trend model in kriging? , 1989 .