Temperature sensing across species

The ability to detect changes in temperature is a fundamental sensory mechanism for every species and provides organisms with a detailed view of the environment. This review focuses on what is known of the neuronal and molecular substrates for thermosensation across species, focusing on the three robust model systems extensively used to study sensory signaling, the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster, and the laboratory mouse. Nematodes migrate to thermal climes that are amenable to their survival, a behavior that is regulated primarily through a single sensory neuron. Additionally, nematodes “learn” to seek out this temperate zone based upon their prior experience, a robust model of learning and memory. Drosophila larvae also prefer select thermal zones that are optimal for growth and have also developed vigorous mechanisms to avoid unfavorable conditions. In mammals, the transduction mechanisms for thermosensation have been identified primarily due to the fact that naturally occurring plant products evoke distinct psychophysical sensation of temperature change. More remarkably, the elucidation of the molecular sensors in mammals, along with those in Drosophila, has demonstrated conservation in the molecular mediators of temperature sensation across diverse species.

[1]  P. Anand,et al.  TRPV3 is a temperature-sensitive vanilloid receptor-like protein , 2002, Nature.

[2]  J. Satterlee,et al.  Specification of Thermosensory Neuron Fate in C. elegans Requires ttx-1, a Homolog of otd/Otx , 2001, Neuron.

[3]  B. Green,et al.  Sensory irritation and coolness produced by menthol: Evidence for selective desensitization of irritation , 1994, Physiology & Behavior.

[4]  M. de Bono,et al.  Neuronal substrates of complex behaviors in C. elegans. , 2005, Annual review of neuroscience.

[5]  Effect of ouabain and potassium-free solution on mammalian thermosensitive afferents in vitro , 1975, Pflügers Archiv.

[6]  M. Caterina,et al.  Altered Thermal Selection Behavior in Mice Lacking Transient Receptor Potential Vanilloid 4 , 2005, The Journal of Neuroscience.

[7]  I. Nagy,et al.  Similarities and Differences between the Responses of Rat Sensory Neurons to Noxious Heat and Capsaicin , 1999, Journal of Neuroscience.

[8]  Olov Sterner,et al.  Pungent products from garlic activate the sensory ion channel TRPA1. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Koutarou D. Kimura,et al.  Genetic Control of Temperature Preference in the Nematode Caenorhabditis elegans , 2005, Genetics.

[10]  C. Zuker,et al.  Genetic dissection of mechanosensory transduction: Mechanoreception-defective mutations of drosophila , 1994, Neuron.

[11]  A. Patapoutian,et al.  Ion channels: Opposite thermosensor in fruitfly and mouse , 2003, Nature.

[12]  N. Wittenburg,et al.  Thermal avoidance in Caenorhabditis elegans: an approach to the study of nociception. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Kristin Scott,et al.  Taste Representations in the Drosophila Brain , 2004, Cell.

[14]  I. Mori Genetics of chemotaxis and thermotaxis in the nematode Caenorhabditis elegans. , 1999, Annual review of genetics.

[15]  David Julius,et al.  TRPA1 Mediates the Inflammatory Actions of Environmental Irritants and Proalgesic Agents , 2006, Cell.

[16]  A. Basbaum,et al.  Molecular mechanisms of nociception , 2001, Nature.

[17]  P. McIntyre,et al.  A TRP Channel that Senses Cold Stimuli and Menthol , 2002, Cell.

[18]  A. Moqrich,et al.  Impaired Thermosensation in Mice Lacking TRPV3, a Heat and Camphor Sensor in the Skin , 2005, Science.

[19]  S. Benzer,et al.  Response of Drosophila to Wasabi Is Mediated by painless, the Fly Homolog of Mammalian TRPA1/ANKTM1 , 2006, Current Biology.

[20]  D. Cockayne,et al.  Enhanced thermal avoidance in mice lacking the ATP receptor P2X3 , 2005, Pain.

[21]  Cori Bargmann,et al.  Invertebrate nociception: behaviors, neurons and molecules. , 2004, Journal of neurobiology.

[22]  R. L. Russell,et al.  Chemotaxis-defective mutants of the nematode Caenorhabditis elegans. , 1975, Genetics.

[23]  D. Julius,et al.  The capsaicin receptor: a heat-activated ion channel in the pain pathway , 1997, Nature.

[24]  I. Nagy,et al.  Noxious heat activates all capsaicin-sensitive and also a sub-population of capsaicin-insensitive dorsal root ganglion neurons , 1999, Neuroscience.

[25]  Lei Liu,et al.  Identification and function of thermosensory neurons in Drosophila larvae , 2003, Nature Neuroscience.

[26]  H. Amrein,et al.  Gustatory Perception and Behavior in Drosophila melanogaster , 2005, Current Biology.

[27]  M. Flonta,et al.  Cold transduction by inhibition of a background potassium conductance in rat primary sensory neurones , 2001, Neuroscience Letters.

[28]  A I Basbaum,et al.  Impaired nociception and pain sensation in mice lacking the capsaicin receptor. , 2000, Science.

[29]  K. Nagata,et al.  Nociceptor and Hair Cell Transducer Properties of TRPA1, a Channel for Pain and Hearing , 2005, The Journal of Neuroscience.

[30]  M. Flonta,et al.  Physiology: Cold current in thermoreceptive neurons , 2001, Nature.

[31]  D. Carpenter,et al.  Mammalian cold receptor afferents: role of an electrogenic sodium pump in sensory transduction. , 1974, Brain research.

[32]  M. Chalfie,et al.  MEC-2 regulates C. elegans DEG/ENaC channels needed for mechanosensation , 2002, Nature.

[33]  Kristin Scott Taste Recognition: Food for Thought , 2005, Neuron.

[34]  R. Dubner,et al.  A peripheral "cold" fiber population responsive to innocuous and noxious thermal stimuli applied to monkey's face. , 1975, Journal of neurophysiology.

[35]  Peter McIntyre,et al.  ANKTM1, a TRP-like Channel Expressed in Nociceptive Neurons, Is Activated by Cold Temperatures , 2003, Cell.

[36]  Barbara Namer,et al.  TRPA1 and TRPM8 activation in humans: effects of cinnamaldehyde and menthol , 2005, Neuroreport.

[37]  Damon A. Clark,et al.  The AFD Sensory Neurons Encode Multiple Functions Underlying Thermotactic Behavior in Caenorhabditis elegans , 2006, The Journal of Neuroscience.

[38]  A. Patapoutian,et al.  Noxious Cold Ion Channel TRPA1 Is Activated by Pungent Compounds and Bradykinin , 2004, Neuron.

[39]  Ralf Baron,et al.  Topical menthol--a human model for cold pain by activation and sensitization of C nociceptors. , 2004, Brain : a journal of neurology.

[40]  Makoto Tominaga,et al.  Heat-Evoked Activation of the Ion Channel, TRPV4 , 2002, The Journal of Neuroscience.

[41]  C. Belmonte,et al.  Specificity of cold thermotransduction is determined by differential ionic channel expression , 2002, Nature Neuroscience.

[42]  R. L. Russell,et al.  Normal and mutant thermotaxis in the nematode Caenorhabditis elegans. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[43]  D. McKemy,et al.  Molecular Pain BioMed Central Review , 2005 .

[44]  Gordon Reid,et al.  ThermoTRP channels and cold sensing: what are they really up to? , 2005, Pflügers Archiv.

[45]  Yuji Kohara,et al.  The LIM Homeobox Gene ceh-14 Confers Thermosensory Function to the AFD Neurons in Caenorhabditis elegans , 2000, Neuron.

[46]  Cori Bargmann,et al.  Otx/otd homeobox genes specify distinct sensory neuron identities in C. elegans. , 2003, Developmental cell.

[47]  P. Garrity,et al.  The Drosophila ortholog of vertebrate TRPA1 regulates thermotaxis. , 2005, Genes & development.

[48]  M. Freichel,et al.  Trp12, a novel Trp related protein from kidney , 2000, FEBS letters.

[49]  T. Zars Two thermosensors in Drosophila have different behavioral functions , 2001, Journal of Comparative Physiology A.

[50]  W. Ryu,et al.  The CMK-1 CaMKI and the TAX-4 Cyclic Nucleotide-Gated Channel Regulate Thermosensory Neuron Gene Expression and Function in C. elegans , 2004, Current Biology.

[51]  H. Gotoh,et al.  Calcium signaling in cold cells studied in cultured dorsal root ganglion neurons , 1999, Neuroscience.

[52]  M. Lazdunski,et al.  A proton-gated cation channel involved in acid-sensing , 1997, Nature.

[53]  Simon C Watkins,et al.  Vanilloid receptor expression suggests a sensory role for urinary bladder epithelial cells , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[54]  David M Tobin,et al.  Mammalian TRPV4 (VR-OAC) directs behavioral responses to osmotic and mechanical stimuli in Caenorhabditis elegans , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[55]  S. Benzer,et al.  Behavioral genetics of thermosensation and hygrosensation in Drosophila. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[56]  M. Lazdunski,et al.  TREK‐1 is a heat‐activated background K+ channel , 2000, The EMBO journal.

[57]  C. Montell Drosophila TRP channels , 2005, Pflügers Archiv.

[58]  Emma J. Kidd,et al.  Warm-coding deficits and aberrant inflammatory pain in mice lacking P2X 3 receptors , 2000, Nature.

[59]  R. Eccles Role of cold receptors and menthol in thirst, the drive to breathe and arousal , 2000, Appetite.

[60]  S. Bingham,et al.  Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia , 2000, Nature.

[61]  A. Hudspeth,et al.  Vanilloid Receptor–Related Osmotically Activated Channel (VR-OAC), a Candidate Vertebrate Osmoreceptor , 2000, Cell.

[62]  Ikue Mori,et al.  Mutations in a Cyclic Nucleotide–Gated Channel Lead to Abnormal Thermosensation and Chemosensation in C. elegans , 1996, Neuron.

[63]  J. Szolcsányi Forty years in capsaicin research for sensory pharmacology and physiology , 2004, Neuropeptides.

[64]  D. McKemy,et al.  Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1 , 2004, Nature.

[65]  O. Krishtal The ASICs: Signaling molecules? Modulators? , 2003, Trends in Neurosciences.

[66]  I. Mori,et al.  Negative Regulation and Gain Control of Sensory Neurons by the C. elegans Calcineurin TAX-6 , 2002, Neuron.

[67]  G. Ruvkun,et al.  A common theme for LIM homeobox gene function across phylogeny? , 1998, The Biological bulletin.

[68]  Cori Bargmann,et al.  A Putative Cyclic Nucleotide–Gated Channel Is Required for Sensory Development and Function in C. elegans , 1996, Neuron.

[69]  R. Meyer,et al.  Evidence for two different heat transduction mechanisms in nociceptive primary afferents innervating monkey skin. , 1995, The Journal of physiology.

[70]  Hitoshi Inada,et al.  Identification of Guanylyl Cyclases That Function in Thermosensory Neurons of Caenorhabditis elegans , 2006, Genetics.

[71]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[72]  S. Heller,et al.  Vertebrate and invertebrate TRPV-like mechanoreceptors. , 2003, Cell calcium.

[73]  G. Schultz,et al.  OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity , 2000, Nature Cell Biology.

[74]  Martin Chalfie,et al.  Gene interactions affecting mechanosensory transduction in Caenorhabditis elegans , 1994, Nature.

[75]  B. Green,et al.  Thermal and nociceptive sensations from menthol and their suppression by dynamic contact , 2007, Behavioural Brain Research.

[76]  Cori Bargmann,et al.  Functional reconstitution of a heteromeric cyclic nucleotide-gated channel of Caenorhabditis elegans in cultured cells , 1999, Brain Research.

[77]  A. Patapoutian,et al.  The Pungency of Garlic: Activation of TRPA1 and TRPV1 in Response to Allicin , 2005, Current Biology.

[78]  Martin Chalfie,et al.  Genetics of sensory mechanotransduction. , 2002, Annual review of genetics.

[79]  D. Julius,et al.  A capsaicin-receptor homologue with a high threshold for noxious heat , 1999, Nature.

[80]  G. Burnstock,et al.  A P2X purinoceptor expressed by a subset of sensory neurons , 1995, Nature.

[81]  Koutarou D. Kimura,et al.  The C. elegans Thermosensory Neuron AFD Responds to Warming , 2004, Current Biology.

[82]  J. Szolcsányi,et al.  Direct evidence for neurogenic inflammation and its prevention by denervation and by pretreatment with capsaicin. , 1967, British journal of pharmacology and chemotherapy.

[83]  I. Mori,et al.  Neural regulation of thermotaxis in Caenorhabditis elegans , 1995, Nature.

[84]  John B. Hogenesch,et al.  A Heat-Sensitive TRP Channel Expressed in Keratinocytes , 2002, Science.

[85]  D. Clapham,et al.  Oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels , 2006, Nature Neuroscience.

[86]  A. Basbaum,et al.  The Cloned Capsaicin Receptor Integrates Multiple Pain-Producing Stimuli , 1998, Neuron.

[87]  David E. Clapham,et al.  TRPV3 is a calcium-permeable temperature-sensitive cation channel , 2002, Nature.

[88]  Robert H. LaMotte,et al.  Response properties of high-threshold cutaneous cold receptors in the primate , 1982, Brain Research.

[89]  Cori Bargmann,et al.  Combinatorial Expression of TRPV Channel Proteins Defines Their Sensory Functions and Subcellular Localization in C. elegans Neurons , 2002, Neuron.

[90]  E. Perl,et al.  Spinal neurons specifically excited by noxious or thermal stimuli: marginal zone of the dorsal horn. , 1970, Journal of neurophysiology.

[91]  D. McKemy,et al.  Lessons from peppers and peppermint: the molecular logic of thermosensation , 2003, Current Opinion in Neurobiology.

[92]  I. Mori,et al.  Molecular Physiology of the Neural Circuit for Calcineurin-Dependent Associative Learning in Caenorhabditis elegans , 2006, The Journal of Neuroscience.

[93]  B. Kaang,et al.  Pyrexia is a new thermal transient receptor potential channel endowing tolerance to high temperatures in Drosophila melanogaster , 2005, Nature Genetics.

[94]  B. Nilius,et al.  Heat-evoked Activation of TRPV4 Channels in a HEK293 Cell Expression System and in Native Mouse Aorta Endothelial Cells* , 2002, The Journal of Biological Chemistry.

[95]  R. Eccles Menthol and Related Cooling Compounds , 1994, The Journal of pharmacy and pharmacology.

[96]  Y. Zotterman,et al.  The effect of menthol on the thermoreceptors. , 1951, Acta physiologica Scandinavica.

[97]  Peter G. Gillespie,et al.  Molecular basis of mechanosensory transduction , 2001, Nature.

[98]  Craig Montell,et al.  The TRP Superfamily of Cation Channels , 2005, Science's STKE.

[99]  J. N. Thomson,et al.  Mutant sensory cilia in the nematode Caenorhabditis elegans. , 1986, Developmental biology.

[100]  S. Bevan,et al.  Sensory neuron-specific actions of capsaicin: mechanisms and applications. , 1990, Trends in pharmacological sciences.

[101]  G. Ruvkun,et al.  Regulation of Interneuron Function in the C. elegans Thermoregulatory Pathway by the ttx-3 LIM Homeobox Gene , 1997, Neuron.

[102]  I. Nagy,et al.  The putative role of vanilloid receptor‐like protein‐1 in mediating high threshold noxious heat‐sensitivity in rat cultured primary sensory neurons , 2002, The European journal of neuroscience.

[103]  Clifford J. Woolf,et al.  TRPA1 Contributes to Cold, Mechanical, and Chemical Nociception but Is Not Essential for Hair-Cell Transduction , 2006, Neuron.

[104]  D. A. Brown,et al.  The mechanism of action of capsaicin on sensory C-type neurons and their axons in vitro , 1987, Neuroscience.

[105]  M. Bushnell,et al.  Temporal and qualitative properties of cold pain and heat pain: a psychophysical study , 1998, Pain.

[106]  Z. Wiesenfeld‐Hallin,et al.  Sex differences in pain perception. , 2005, Gender medicine.

[107]  M. Welsh,et al.  DEG/ENaC ion channels involved in sensory transduction are modulated by cold temperature , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[108]  Gilles Laurent,et al.  painless, a Drosophila Gene Essential for Nociception , 2003, Cell.

[109]  E. Wei,et al.  AG‐3–5: a chemical producing sensations of cold , 1983, The Journal of pharmacy and pharmacology.

[110]  M. Caterina,et al.  Altered urinary bladder function in mice lacking the vanilloid receptor TRPV1 , 2002, Nature Neuroscience.

[111]  D. McKemy,et al.  Identification of a cold receptor reveals a general role for TRP channels in thermosensation , 2002, Nature.

[112]  B. Green,et al.  The sensory effects of l-menthol on human skin. , 1992, Somatosensory & motor research.

[113]  A. Jancsó-Gábor,et al.  Pharmacologically induced selective degeneration of chemosensitive primary sensory neurones , 1977, Nature.

[114]  H. Bostock,et al.  Slowly conducting afferents activated by innocuous low temperature in human skin , 2001, The Journal of physiology.

[115]  Jaeseob Kim,et al.  Histamine and Its Receptors Modulate Temperature-Preference Behaviors in Drosophila , 2006, The Journal of Neuroscience.

[116]  Jacques Noël,et al.  TREK‐1, a K+ channel involved in polymodal pain perception , 2006, The EMBO journal.

[117]  J. Levine,et al.  Hypotonicity Induces TRPV4-Mediated Nociception in Rat , 2003, Neuron.