AID to overcome the limitations of genomic information

[1]  T. Honjo,et al.  A target selection of somatic hypermutations is regulated similarly between T and B cells upon activation-induced cytidine deaminase expression. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[2]  A. Yasui,et al.  MSH2–MSH6 stimulates DNA polymerase η, suggesting a role for A:T mutations in antibody genes , 2005, The Journal of experimental medicine.

[3]  T. Honjo,et al.  DNA cleavage in immunoglobulin somatic hypermutation depends on de novo protein synthesis but not on uracil DNA glycosylase. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[4]  M. Neuberger,et al.  Evolution of the AID/APOBEC family of polynucleotide (deoxy)cytidine deaminases. , 2005, Molecular biology and evolution.

[5]  Svend K. Petersen-Mahrt DNA deamination in immunity , 2005, Immunological reviews.

[6]  Vasco M. Barreto,et al.  Activation-induced deaminase: controversies and open questions. , 2005, Trends in immunology.

[7]  Zizhen Yang,et al.  Somatic hypermutation at A·T pairs: polymerase error versus dUTP incorporation , 2005, Nature Reviews Immunology.

[8]  Wendy Dean,et al.  Activation-induced Cytidine Deaminase Deaminates 5-Methylcytosine in DNA and Is Expressed in Pluripotent Tissues , 2004, Journal of Biological Chemistry.

[9]  Myron F. Goodman,et al.  Biochemical Analysis of Hypermutational Targeting by Wild Type and Mutant Activation-induced Cytidine Deaminase* , 2004, Journal of Biological Chemistry.

[10]  G. S. Lee,et al.  B cell development leads off with a base hit: dU:dG mismatches in class switching and hypermutation. , 2004, Molecular cell.

[11]  L. Pasqualucci,et al.  Expression of the AID protein in normal and neoplastic B cells. , 2004, Blood.

[12]  F. Alt,et al.  An evolutionarily conserved target motif for immunoglobulin class-switch recombination , 2004, Nature Immunology.

[13]  M. Neuberger,et al.  Mismatch recognition and uracil excision provide complementary paths to both Ig switching and the A/T-focused phase of somatic mutation. , 2004, Molecular cell.

[14]  E. Lander,et al.  Finishing the euchromatic sequence of the human genome , 2004 .

[15]  J. Bonfield,et al.  Finishing the euchromatic sequence of the human genome , 2004, Nature.

[16]  M. Scharff,et al.  The role of activation-induced cytidine deaminase in antibody diversification, immunodeficiency, and B-cell malignancies. , 2004, The Journal of allergy and clinical immunology.

[17]  T. Honjo,et al.  De novo protein synthesis is required for activation-induced cytidine deaminase-dependent DNA cleavage in immunoglobulin class switch recombination. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[18]  F. Alt,et al.  Replication protein A interacts with AID to promote deamination of somatic hypermutation targets , 2004, Nature.

[19]  R. Jaenisch,et al.  Uracil DNA Glycosylase Activity Is Dispensable for Immunoglobulin Class Switch , 2004, Science.

[20]  M. Emerman,et al.  Ancient Adaptive Evolution of the Primate Antiviral DNA-Editing Enzyme APOBEC3G , 2004, PLoS biology.

[21]  T. Honjo,et al.  Separate domains of AID are required for somatic hypermutation and class-switch recombination , 2004, Nature Immunology.

[22]  F. Alt,et al.  Class-switch recombination: interplay of transcription, DNA deamination and DNA repair , 2004, Nature Reviews Immunology.

[23]  M. Watson,et al.  Activation-induced Cytosine Deaminase (AID) Is Actively Exported out of the Nucleus but Retained by the Induction of DNA Breaks* , 2004, Journal of Biological Chemistry.

[24]  M. Wabl,et al.  Genome-wide somatic hypermutation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Vasco M. Barreto,et al.  Somatic Hypermutation Is Limited by CRM1-dependent Nuclear Export of Activation-induced Deaminase , 2004, The Journal of experimental medicine.

[26]  R. König,et al.  Single-strand specificity of APOBEC3G accounts for minus-strand deamination of the HIV genome , 2004, Nature Structural &Molecular Biology.

[27]  F. Papavasiliou,et al.  The regulation of somatic hypermutation. , 2004, Current opinion in immunology.

[28]  Samuel H. Wilson,et al.  Recombinogenic Phenotype of Human Activation-Induced Cytosine Deaminase , 2004, The Journal of Immunology.

[29]  M. Lai,et al.  Hepatitis C virus induces a mutator phenotype: Enhanced mutations of immunoglobulin and protooncogenes , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[30]  N. Maizels,et al.  Transcription-coupled mutagenesis by the DNA deaminase AID , 2004, Genome Biology.

[31]  M. Lieber,et al.  DNA Substrate Length and Surrounding Sequence Affect the Activation-induced Deaminase Activity at Cytidine* , 2004, Journal of Biological Chemistry.

[32]  Reiko Shinkura,et al.  Activation-induced cytidine deaminase shuttles between nucleus and cytoplasm like apolipoprotein B mRNA editing catalytic polypeptide 1 , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[33]  J. Platt,et al.  The Double-Edged Sword of Activation-Induced Cytidine Deaminase , 2004 .

[34]  Y. Yokota,et al.  Transcription-Coupled Events Associating with Immunoglobulin Switch Region Chromatin , 2003, Science.

[35]  P. Casali,et al.  EBV-Encoded Latent Membrane Protein 1 Cooperates with BAFF/BLyS and APRIL to Induce T Cell-Independent Ig Heavy Chain Class Switching 1 , 2003, The Journal of Immunology.

[36]  Alberto Martin,et al.  Msh2 ATPase Activity Is Essential for Somatic Hypermutation at A-T Basepairs and for Efficient Class Switch Recombination , 2003, The Journal of experimental medicine.

[37]  Alberto Martin,et al.  Induction of somatic hypermutation is associated with modifications in immunoglobulin variable region chromatin. , 2003, Immunity.

[38]  A. Fischer,et al.  Human uracil–DNA glycosylase deficiency associated with profoundly impaired immunoglobulin class-switch recombination , 2003, Nature Immunology.

[39]  M. Neuberger,et al.  By‐products of immunoglobulin somatic hypermutation , 2003, Genes, chromosomes & cancer.

[40]  A. Fischer,et al.  AID mutant analyses indicate requirement for class-switch-specific cofactors , 2003, Nature Immunology.

[41]  Vasco M. Barreto,et al.  C-terminal deletion of AID uncouples class switch recombination from somatic hypermutation and gene conversion. , 2003, Molecular cell.

[42]  N. Navaratnam,et al.  The apolipoprotein B mRNA editing complex performs a multifunctional cycle and suppresses nonsense‐mediated decay , 2003, The EMBO journal.

[43]  U. Storb,et al.  The E box motif CAGGTG enhances somatic hypermutation without enhancing transcription. , 2003, Immunity.

[44]  M. Goodman,et al.  Processive AID-catalysed cytosine deamination on single-stranded DNA simulates somatic hypermutation , 2003, Nature.

[45]  J. Weill,et al.  What role for AID: mutator, or assembler of the immunoglobulin mutasome? , 2003, Nature Immunology.

[46]  A. Bhagwat,et al.  Human activation-induced cytidine deaminase causes transcription-dependent, strand-biased C to U deaminations. , 2003, Nucleic acids research.

[47]  M. Neuberger,et al.  In Vitro Deamination of Cytosine to Uracil in Single-stranded DNA by Apolipoprotein B Editing Complex Catalytic Subunit 1 (APOBEC1)* , 2003, Journal of Biological Chemistry.

[48]  F. Papavasiliou,et al.  AID Mediates Hypermutation by Deaminating Single Stranded DNA , 2003, The Journal of experimental medicine.

[49]  N. Kakazu,et al.  Constitutive Expression of AID Leads to Tumorigenesis , 2003, The Journal of experimental medicine.

[50]  F. Alt,et al.  The influence of transcriptional orientation on endogenous switch region function , 2003, Nature Immunology.

[51]  M. Nussenzweig,et al.  Transcription enhances AID-mediated cytidine deamination by exposing single-stranded DNA on the nontemplate strand , 2003, Nature Immunology.

[52]  M. Lieber,et al.  R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells , 2003, Nature Immunology.

[53]  F. Alt,et al.  Transcription-targeted DNA deamination by the AID antibody diversification enzyme , 2003, Nature.

[54]  M. Goodman,et al.  Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[55]  R. Wall,et al.  Somatic hypermutation of the B cell receptor genes B29 (Igβ, CD79b) and mb1 (Igα, CD79a) , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[56]  H. Jacobs,et al.  DNA Double Strand Breaks Occur Independent of AID in Hypermutating Ig Genes , 2003, Clinical & developmental immunology.

[57]  T. Honjo,et al.  De novo protein synthesis is required for the activation-induced cytidine deaminase function in class-switch recombination , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[58]  T. Ushiki,et al.  Molecular Visualization of Immunoglobulin Switch Region RNA/DNA Complex by Atomic Force Microscope* , 2003, The Journal of Biological Chemistry.

[59]  T. Yao,et al.  Regulation of E2A Activities by Histone Acetyltransferases in B Lymphocyte Development* , 2003, The Journal of Biological Chemistry.

[60]  J. Weitzman,et al.  Somatic hypermutation , 2020, Genome Biology.

[61]  M. Radic,et al.  DNA-dependent Protein Kinase Activity Is Not Required for Immunoglobulin Class Switching , 2002, The Journal of experimental medicine.

[62]  Reuben S Harris,et al.  RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators. , 2002, Molecular cell.

[63]  D. Barnes,et al.  Immunoglobulin Isotype Switching Is Inhibited and Somatic Hypermutation Perturbed in UNG-Deficient Mice , 2002, Current Biology.

[64]  M. Neuberger,et al.  Altering the pathway of immunoglobulin hypermutation by inhibiting uracil-DNA glycosylase , 2002, Nature.

[65]  Alberto Martin,et al.  Somatic hypermutation of the AID transgene in B and non-B cells , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[66]  Alberto Martin,et al.  AID and mismatch repair in antibody diversification , 2002, Nature Reviews Immunology.

[67]  M. Neuberger,et al.  AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification , 2002, Nature.

[68]  T. Honjo,et al.  AID Enzyme-Induced Hypermutation in an Actively Transcribed Gene in Fibroblasts , 2002, Science.

[69]  C. Milstein,et al.  AID-GFP chimeric protein increases hypermutation of Ig genes with no evidence of nuclear localization , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[70]  D. Schatz,et al.  The Activation-induced Deaminase Functions in a Postcleavage Step of the Somatic Hypermutation Process , 2002, The Journal of experimental medicine.

[71]  F. Alt,et al.  IgH class switch recombination to IgG1 in DNA-PKcs-deficient B cells. , 2002, Immunity.

[72]  I. Dunham,et al.  An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22. , 2002, Genomics.

[73]  M. Gellert V(D)J recombination: RAG proteins, repair factors, and regulation. , 2002, Annual review of biochemistry.

[74]  T. Honjo,et al.  Molecular mechanism of class switch recombination: linkage with somatic hypermutation. , 2002, Annual review of immunology.

[75]  Thomas Ried,et al.  AID is required to initiate Nbs1/γ-H2AX focus formation and mutations at sites of class switching , 2001, Nature.

[76]  T. Honjo,et al.  Quantitative Regulation of Class Switch Recombination by Switch Region Transcription , 2001, The Journal of experimental medicine.

[77]  Gouri Nanjangud,et al.  Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas , 2001, Nature.

[78]  Q. Kong,et al.  DNA breaks in hypermutating immunoglobulin genes: evidence for a break-and-repair pathway of somatic hypermutation. , 2001, Genetics.

[79]  T. Honjo,et al.  Palindromic but not G-rich sequences are targets of class switch recombination. , 2001, International immunology.

[80]  H. Sakano,et al.  The PU . 1 and NF-EM 5 binding motifs in the Ig κ 3 enhancer are responsible for directing somatic hypermutations to the intrinsic hotspots in the transgenic V κ gene , 2001 .

[81]  A. Fischer,et al.  Activation-Induced Cytidine Deaminase (AID) Deficiency Causes the Autosomal Recessive Form of the Hyper-IgM Syndrome (HIGM2) , 2000, Cell.

[82]  T. Honjo,et al.  Class Switch Recombination and Hypermutation Require Activation-Induced Cytidine Deaminase (AID), a Potential RNA Editing Enzyme , 2000, Cell.

[83]  F. Alt,et al.  Transcription-induced Cleavage of Immunoglobulin Switch Regions by Nucleotide Excision Repair Nucleases in Vitro* , 2000, The Journal of Biological Chemistry.

[84]  N. Sherman,et al.  Molecular Cloning of Apobec-1 Complementation Factor, a Novel RNA-Binding Protein Involved in the Editing of Apolipoprotein B mRNA , 2000, Molecular and Cellular Biology.

[85]  F. Delbos,et al.  Mismatch repair and immunoglobulin gene hypermutation: did we learn something? , 1999, Immunology today.

[86]  R. Kucherlapati,et al.  Reduced Isotype Switching in Splenic B Cells from Mice Deficient in Mismatch Repair Enzymes , 1999, The Journal of experimental medicine.

[87]  T. Honjo,et al.  Specific Expression of Activation-induced Cytidine Deaminase (AID), a Novel Member of the RNA-editing Deaminase Family in Germinal Center B Cells* , 1999, The Journal of Biological Chemistry.

[88]  M. Neuberger,et al.  Deficiency in Msh2 affects the efficiency and local sequence specificity of immunoglobulin class‐switch recombination: parallels with somatic hypermutation , 1999, The EMBO journal.

[89]  J. Bachl,et al.  Hypermutation targets a green fluorescent protein‐encoding transgene in the presence of immunoglobulin enhancers , 1999, European journal of immunology.

[90]  L. Pasqualucci,et al.  BCL-6 mutations in normal germinal center B cells: evidence of somatic hypermutation acting outside Ig loci. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[91]  C. Milstein,et al.  Hot spot focusing of somatic hypermutation in MSH2-deficient mice suggests two stages of mutational targeting. , 1998, Immunity.

[92]  U. Storb,et al.  Progress in understanding the mechanism and consequences of somatic hypermutation , 1998, Immunological reviews.

[93]  J. Hackett,et al.  Cis‐acting sequences that affect somatic hypermutation of Ig genes , 1998, Immunological reviews.

[94]  M. Neuberger,et al.  Multiple sequences from downstream of the Jκ cluster can combine to recruit somatic hypermutation to a heterologous, upstream mutation domain , 1998, European journal of immunology.

[95]  C. Milstein,et al.  Targeting of non-lg sequences in place of the V segment by somatic hyper mutation , 1995, Nature.

[96]  M. Lieber,et al.  RNA:DNA complex formation upon transcription of immunoglobulin switch regions: implications for the mechanism and regulation of class switch recombination. , 1995, Nucleic acids research.

[97]  C. Milstein,et al.  Targeting of non-Ig sequences in place of the V segment by somatic hypermutation. , 1995, Nature.

[98]  T. Manser,et al.  Hypermutation is observed only in antibody H chain V region transgenes that have recombined with endogenous immunoglobulin H DNA: implications for the location of cis-acting elements required for somatic mutation , 1993, The Journal of experimental medicine.

[99]  D. Loh,et al.  Mutations of the chloramphenicol acetyl transferase transgene driven by the immunoglobulin promoter and intron enhancer. , 1993, International immunology.

[100]  N A Kolchanov,et al.  Somatic hypermutagenesis in immunoglobulin genes. II. Influence of neighbouring base sequences on mutagenesis. , 1992, Biochimica et biophysica acta.

[101]  P. Gearhart,et al.  Boundaries of somatic mutation in rearranged immunoglobulin genes: 5' boundary is near the promoter, and 3' boundary is approximately 1 kb from V(D)J gene , 1990, The Journal of experimental medicine.

[102]  J. Griffin,et al.  Induction of RNA-stabilized DMA conformers by transcription of an immunoglobulin switch region , 1990, Nature.

[103]  H. Sakano,et al.  Switch circular DNA formed in cytokine-treated mouse splenocytes: Evidence for intramolecular DNA deletion in immunoglobulin class switching , 1990, Cell.

[104]  T. Honjo,et al.  Circular DNA is excised by immunoglobulin class switch recombination , 1990, Cell.

[105]  M. Wabl,et al.  Circular DNA is a product of the immunoglobulin class switch rearrangement , 1990, Nature.