A mesh adaptation strategy for complex wall-modeled turbomachinery LES

Abstract A mesh adaptation methodology for wall-modeled turbomachinery Large Eddy Simulation (LES) is proposed, simultaneously taking into account two quantities of interest: the average kinetic energy dissipation rate and the normalized wall distance y + . This strategy is first tested on a highly loaded transonic blade with separated flow, and is compared to wall-resolved LES results, as well as experimental data. The adaptation methodology allows to predict fairly well the boundary layer transition on the suction side and the recirculation bubble of the pressure side. The method is then tested on a real turbofan stage for which it is shown that the general operating point of the computation converges toward the experimental one. Furthermore, comparison of turbulence predictions with hot-wire anemometry show good agreement as soon as a first adaptation is performed, which confirms the efficiency of the proposed adaptation method.

[1]  Paul G. Tucker Unsteady Computational Fluid Dynamics in Aeronautics , 2013 .

[2]  D. Venditti,et al.  Grid adaptation for functional outputs: application to two-dimensional inviscid flows , 2002 .

[3]  J. Boussuge,et al.  Numerical Investigations in Turbomachinery : A State of the Art Large Eddy Simulation Applications , 2009 .

[4]  Guillaume Dufour,et al.  Experimental Analysis of the Global Performance and the Flow Through a High-Bypass Turbofan in Windmilling Conditions , 2015 .

[5]  Peter Flohr,et al.  Perspectives of LES in Turbomachinery Design , 2004 .

[6]  H. D. Joslyn,et al.  Three-dimensional unsteady flow in an axial flow turbine , 1985 .

[7]  Frédéric Alauzet,et al.  Mesh adaptation strategies using wall functions and low-Reynolds models , 2018 .

[8]  T. Poinsot,et al.  Large-eddy simulation and experimental study of heat transfer, nitric oxide emissions and combustion instability in a swirled turbulent high-pressure burner , 2007, Journal of Fluid Mechanics.

[9]  K. Carlson,et al.  Turbulent Flows , 2020, Finite Analytic Method in Flows and Heat Transfer.

[10]  Michael Rudgyard,et al.  Steady and Unsteady Flow Simulations Using the Hybrid Flow Solver AVBP , 1999 .

[11]  A. Oliva,et al.  Parallel adaptive mesh refinement for large-eddy simulations of turbulent flows , 2015 .

[12]  J. Adamczyk Model equation for simulating flows in multistage turbomachinery , 1996 .

[13]  U. Piomelli,et al.  Wall-layer models for large-eddy simulations , 2008 .

[14]  Zaib Ali,et al.  Multiblock Structured Mesh Generation for Turbomachinery Flows , 2013, IMR.

[15]  Gaofeng Wang,et al.  An overset grid method for large eddy simulation of turbomachinery stages , 2014, J. Comput. Phys..

[16]  Dimitris Drikakis,et al.  WENO schemes on arbitrary unstructured meshes for laminar, transitional and turbulent flows , 2014, J. Comput. Phys..

[17]  Andrea Arnone,et al.  Grid Dependency Study for the NASA Rotor 37 Compressor Blade , 1997 .

[18]  Charles Dapogny,et al.  Three-dimensional adaptive domain remeshing, implicit domain meshing, and applications to free and moving boundary problems , 2014, J. Comput. Phys..

[19]  Michael J. Aftosmis,et al.  Adjoint Error Estimation and Adaptive Refinement for Embedded-Boundary Cartesian Meshes , 2007 .

[20]  A. Hussain,et al.  The mechanics of an organized wave in turbulent shear flow , 1970, Journal of Fluid Mechanics.

[21]  P. Lax,et al.  Systems of conservation laws , 1960 .

[22]  Johan Larsson,et al.  Large eddy simulation with modeled wall-stress: recent progress and future directions , 2016 .

[23]  Parviz Moin,et al.  An improved dynamic non-equilibrium wall-model for large eddy simulation , 2013 .

[24]  P. Spalart Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach , 1997 .

[25]  Ning Qin,et al.  Efficient Adjoint-Based Mesh Adaptation Applied to Turbo-Machinery Flows , 2018 .

[26]  Soshi Kawai,et al.  Dynamic non-equilibrium wall-modeling for large eddy simulation at high Reynolds numbers , 2013 .

[27]  Pascal Frey,et al.  Anisotropic mesh adaptation for CFD computations , 2005 .

[28]  Johan Larsson,et al.  The prospect of using large eddy and detached eddy simulations in engineering design, and the research required to get there , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[29]  Nicolas Gourdain,et al.  High performance parallel computing of flows in complex geometries: I. Methods , 2009 .

[30]  William C. Reynolds,et al.  The mechanics of an organized wave in turbulent shear flow. Part 2. Experimental results , 1972, Journal of Fluid Mechanics.

[31]  Nicolas Gourdain,et al.  High performance parallel computing of flows in complex geometries , 2011 .

[32]  Paul G. Tucker,et al.  Computation of unsteady turbomachinery flows: Part 2—LES and hybrids , 2011 .

[33]  P. Spalart Detached-Eddy Simulation , 2009 .

[34]  Paul G. Tucker,et al.  Computation of unsteady turbomachinery flows: Part 1Progress and challenges , 2011 .

[35]  Gaofeng Wang,et al.  Numerical analysis of a high-order unstructured overset grid method for compressible LES of turbomachinery , 2018, J. Comput. Phys..

[36]  C. Meneveau,et al.  Integral wall model for large eddy simulations of wall-bounded turbulent flows , 2015 .

[37]  Jacques Peter,et al.  Goal oriented mesh adaptation using total derivative of aerodynamic functions with respect to mesh coordinates – With applications to Euler flows , 2012 .

[38]  P. Moin,et al.  Dynamic slip wall model for large-eddy simulation , 2018, Journal of Fluid Mechanics.

[39]  Frédéric Alauzet,et al.  Anisotropic mesh adaptation for turbomachinery applications , 2017 .

[40]  Eric J. Nielsen,et al.  Validation of 3D Adjoint Based Error Estimation and Mesh Adaptation for Sonic Boom Prediction , 2006 .

[41]  Thierry Poinsot,et al.  Implementation Methods of Wall Functions in Cell-vertex Numerical Solvers , 2010 .

[42]  Xinrong Su,et al.  Adaptive mesh refinement method based investigation of the interaction between shock wave, boundary layer, and tip vortex in a transonic compressor , 2018 .

[43]  T. Poinsot,et al.  A characteristic inlet boundary condition for compressible, turbulent, multispecies turbomachinery flows , 2019, Computers & Fluids.

[44]  Olivier Colin,et al.  Development of High-Order Taylor-Galerkin Schemes for LES , 2000 .

[45]  William N. Dawes The Simulation of Three-Dimensional Viscous Flow in Turbomachinery Geometries Using a Solution-Adaptive Unstructured Mesh Methodology , 1992 .

[46]  Xin Yuan,et al.  Adaptive mesh refinement method-based large eddy simulation for the flow over circular cylinder at ReD = 3900 , 2018 .

[47]  Ghislain Lartigue,et al.  Mesh adaptation for large‐eddy simulations in complex geometries , 2016 .

[48]  Johan Larsson,et al.  Anisotropic grid-adaptation in large eddy simulations , 2017 .

[49]  Michael B. Giles,et al.  Solution Adaptive Mesh Refinement Using Adjoint Error Analysis , 2001 .

[50]  Michael B. Giles,et al.  Adjoint and defect error bounding and correction for functional estimates , 2003 .

[51]  Paul-Louis George,et al.  3D transient fixed point mesh adaptation for time-dependent problems: Application to CFD simulations , 2007, J. Comput. Phys..

[52]  Shahrokh Shahpar,et al.  Combined Hessian and Adjoint Error-Based Anisotropic Mesh Adaptation for Turbomachinery Flows , 2017 .

[53]  J. Boussuge,et al.  Extended integral wall-model for large-eddy simulations of compressible wall-bounded turbulent flows , 2018, Physics of Fluids.

[54]  U. Piomelli Wall-layer models for large-eddy simulations , 2008 .

[55]  F. Duchaine,et al.  Large eddy simulation of flows in industrial compressors: a path from 2015 to 2035 , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[56]  Jens-Dominik Müller,et al.  A Mesh Adaptation Strategy to Predict Pressure Losses in LES of Swirled Flows , 2017 .

[57]  M. Giles,et al.  Adjoint Error Correction for Integral Outputs , 2003 .

[58]  T. Poinsot Boundary conditions for direct simulations of compressible viscous flows , 1992 .

[59]  James Tyacke,et al.  Future Use of Large Eddy Simulation in Aeroengines , 2014 .

[60]  P. Tucker,et al.  Optimal multi-block mesh generation for CFD , 2017 .

[61]  J. Deardorff A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers , 1970, Journal of Fluid Mechanics.

[62]  G. Park,et al.  Wall-Modeled Large-Eddy Simulation for Complex Turbulent Flows. , 2018, Annual review of fluid mechanics.

[63]  John D. Denton,et al.  Lessons from rotor 37 , 1997 .

[64]  Guillaume Dufour,et al.  Experimental Analysis of the Unsteady, Turbulent Flow through the Fan Stage of a High-Bypass Turbofan in Windmilling Conditions , 2017 .

[65]  James Tyacke,et al.  Future Use of Large Eddy Simulation in Aero‐engines , 2015 .

[66]  Sébastien Deck,et al.  Large eddy simulation for aerodynamics: status and perspectives , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[67]  D. Drikakis,et al.  Comparison of structured- and unstructured-grid, compressible and incompressible methods using the vortex pairing problem , 2015 .

[68]  Man Mohan Rai,et al.  Multi-airfoil Navier-Stokes simulations of turbine rotor-stator interaction , 1988 .

[69]  G. Balarac,et al.  A wall-layer model for large-eddy simulations of turbulent flows with/out pressure gradient , 2011 .

[70]  D. Darmofal,et al.  Review of Output-Based Error Estimation and Mesh Adaptation in Computational Fluid Dynamics , 2011 .

[71]  M. Carbonaro,et al.  von Karman Institute for Fluid Dynamics , 2004 .

[72]  P. Moin,et al.  Log-layer mismatch and modeling of the fluctuating wall stress in wall-modeled large-eddy simulations. , 2017, Physical review fluids.

[73]  John D. Denton,et al.  The 1993 IGTI Scholar Lecture: Loss Mechanisms in Turbomachines , 1993 .