Magnetic equivalent circuit model for unipolar hybrid excitation synchronous machine

Lately, there has been increased interest in hybrid excitation electrical ma- chines. Hybrid excitation is a construction that combines permanent magnet excitation with wound field excitation. Within the general classification, these machines can be classified as modified synchronous machines or inductor machines. These machines may be applied as motors and generators. The complexity of electromagnetic phenomena which occur as a result of coupling of magnetic fluxes of separate excitation systems with perpendicular magnetic axis is a motivation to formulate various mathematical models of these machines. The presented paper discusses the construction of a unipolar hybrid excitation synchronous machine. The magnetic equivalent circuit model including nonlinear magnetization curves is presented. Based on this model, it is possible to deter- mine the multi-parameter relationships between the induced voltage and magnetomotive force in the excitation winding. Particular attention has been paid to the analysis of the impact of additional stator and rotor yokes on above relationship. Induced voltage deter- mines the remaining operating parameters of the machine, both in the motor and gene- rator mode of operation. The analysis of chosen correlations results in an identification of the effective control range of electromotive force of the machine.