The non‐evolving internal structure of early‐type galaxies: the case study SDSS J0728+3835 at z= 0.206

We study the internal dynamical structure of the early-type lens galaxy SDSS J0728+3835 at z = 0.206. The analysis is based on two-dimensional kinematic maps extending out to 1.7 effective radii obtained from Keck spectroscopy, on lensing geometry and on stellar mass estimates obtained from multiband Hubble Space Telescope imaging. The data are modelled under the assumptions of axial symmetry supported by a two-integral distribution function, by applying the combined gravitational lensing and stellar dynamics code cauldron and by yielding high-quality constraints for an early-type galaxy at cosmological redshifts. Modelling the total density profile as a power law of the form , we find that it is nearly isothermal (logarithmic slope gamma' = 2.08+0.04(-0.02)) and quite flattened (axial ratio q = 0.60+0.08(-0.03)). The galaxy is mildly anisotropic (delta = 0.08 +/- 0.02) and shows a fair amount of rotational support, in particular towards the outer regions. We determine a dark matter fraction lower limit of 28 per cent within the effective radius. The stellar contribution to the total mass distribution is close to maximal for a Chabrier initial mass function (IMF), whereas for a Salpeter IMF the stellar mass exceeds the total mass within the galaxy inner regions. We find that the combination of a Navarro, Frenk and White dark matter halo with the maximally rescaled luminous profile provides a remarkably good fit to the total mass distribution over a broad radial range. Our results confirm and expand the findings of the Sloan Lens ACS Survey for early-type galaxies of comparable velocity dispersion (Sigma(SDSS) = 214 +/- 11 km s-1). The internal structure of SDSS J0728 is consistent with that of local early-type galaxies of comparable velocity dispersion as measured by the Spectrographic Areal Unit for Research on Optical Nebulae (SAURON) project, suggesting lack of evolution in the past two billion years.

[1]  V. Debattista,et al.  Hunting for the dark : the hidden side of galaxy formation : proceedings of the international conference, Qawra, Malta, 19-23 October 2009 , 2010 .

[2]  A. Bolton,et al.  THE INITIAL MASS FUNCTION OF EARLY-TYPE GALAXIES , 2010 .

[3]  R. Bender,et al.  GOLDEN GRAVITATIONAL LENSING SYSTEMS FROM THE SLOAN LENS ACS SURVEY. I. SDSS J1538+5817: ONE LENS FOR TWO SOURCES, , 2009, 0912.0744.

[4]  T. Treu,et al.  Stars and dark matter in the spiral gravitational lens 2237+0305 , 2008, 0812.0748.

[5]  M. Irwin,et al.  HUNTING FOR THE DARK: THE HIDDEN SIDE OF GALAXY FORMATION , 2010 .

[6]  A. Bolton,et al.  THE SLOAN LENS ACS SURVEY. IX. COLORS, LENSING, AND STELLAR MASSES OF EARLY-TYPE GALAXIES , 2009, 0911.2471.

[7]  D. Buote,et al.  The slope of the mass profile and the tilt of the Fundamental Plane in early-type galaxies , 2009, 0911.0678.

[8]  P. Marshall,et al.  DISSECTING THE GRAVITATIONAL LENS B1608+656. II. PRECISION MEASUREMENTS OF THE HUBBLE CONSTANT, SPATIAL CURVATURE, AND THE DARK ENERGY EQUATION OF STATE , 2009, 0910.2773.

[9]  A. Bolton,et al.  THE STRUCTURE AND DYNAMICS OF MASSIVE EARLY-TYPE GALAXIES: ON HOMOLOGY, ISOTHERMALITY, AND ISOTROPY INSIDE ONE EFFECTIVE RADIUS , 2009, 0906.1349.

[10]  Oxford,et al.  Stellar velocity profiles and line strengths out to four effective radii in the early-type galaxies NGC 3379 and 821 , 2009, 0906.0018.

[11]  A. Bolton,et al.  Two-dimensional kinematics of SLACS lenses - II. Combined lensing and dynamics analysis of early-type galaxies at z = 0.08-0.33 , 2009, 0904.3861.

[12]  Crescenzo Tortora,et al.  Central mass-to-light ratios and dark matter fractions in early-type galaxies , 2009, 0901.3781.

[13]  R. Bender,et al.  The flattening and the orbital structure of early-type galaxies and collisionless N-body binary disc mergers , 2008, 0811.2130.

[14]  F. Feroz,et al.  MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.

[15]  L. Koopmans,et al.  Crash-testing the CAULDRON code for joint lensing and dynamics analysis of early-type galaxies , 2008, 0808.3916.

[16]  A. Bolton,et al.  THE SLACS SURVEY. VIII. THE RELATION BETWEEN ENVIRONMENT AND INTERNAL STRUCTURE OF EARLY-TYPE GALAXIES , 2008 .

[17]  James Binney,et al.  Galactic Dynamics: Second Edition , 2008 .

[18]  Frank C. van den Bosch,et al.  Concentration, spin and shape of dark matter haloes as a function of the cosmological model: WMAP1, WMAP3 and WMAP5 results , 2008, 0805.1926.

[19]  A. Bolton,et al.  Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE SLOAN LENS ACS SURVEY. VII. ELLIPTICAL GALAXY SCALING LAWS FROM DIRECT OBSERVATIONAL MASS MEASUREMENTS 1 , 2022 .

[20]  A. Bolton,et al.  Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE SLOAN LENS ACS SURVEY. V. THE FULL ACS STRONG-LENS SAMPLE 1 , 2022 .

[21]  Victor P. Debattista,et al.  Dark matter content and internal dynamics of NGC 4697 : NMAGIC particle models from slit data and planetary nebula velocities , 2008, 0802.1726.

[22]  A. Bolton,et al.  The Sloan Lens ACS Survey. VI. Discovery and Analysis of a Double Einstein Ring , 2008, 0801.1555.

[23]  Kevin H. Knuth,et al.  Bayesian Inference and Maximum Entropy Methods in Science and Engineering: 27th International Workshop on Bayesian Inference and Maximum Entropy Methods , 2007 .

[24]  Institute for Advanced Study,et al.  Triaxial orbit based galaxy models with an application to the (apparent) decoupled core galaxy NGC 4365 , 2007, 0712.0113.

[25]  Oxford,et al.  The shape of the dark matter halo in the early‐type galaxy NGC 2974 , 2007, 0711.1775.

[26]  T. Treu,et al.  Two-dimensional kinematics of SLACS lenses – I. Phase-space analysis of the early-type galaxy SDSS J2321−097 at z≈ 0.1 , 2007, 0711.0888.

[27]  A. Bolton,et al.  Superresolving Distant Galaxies with Gravitational Telescopes: Keck Laser Guide Star Adaptive Optics and Hubble Space Telescope Imaging of the Lens System SDSS J0737+3216 , 2007, 0710.0637.

[28]  R. Bender,et al.  Dynamical modelling of luminous and dark matter in 17 Coma early-type galaxies , 2007, 0709.0691.

[29]  R. Saglia,et al.  Axisymmetric orbit models of N-body merger remnants: a dependency of reconstructed mass on viewing angle , 2007, 0708.2205.

[30]  C. Kochanek,et al.  The Baryon Fractions and Mass-to-Light Ratios of Early-Type Galaxies , 2007, 0705.3647.

[31]  F. Feroz,et al.  Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses , 2007, 0704.3704.

[32]  E. Emsellem,et al.  The SAURON project – X. The orbital anisotropy of elliptical and lenticular galaxies: revisiting the (V/σ, ɛ) diagram with integral‐field stellar kinematics , 2007, astro-ph/0703533.

[33]  J. Rhodes,et al.  The Sloan Lens ACS Survey. IV. The Mass Density Profile of Early-Type Galaxies out to 100 Effective Radii , 2007, astro-ph/0701589.

[34]  L. Koopmans,et al.  A Unifying Framework for Self-consistent Gravitational Lensing and Stellar Dynamics Analyses of Early-Type Galaxies , 2007, astro-ph/0701372.

[35]  A. Bolton,et al.  The Sloan Lens ACS Survey. III. The Structure and Formation of Early-Type Galaxies and Their Evolution since z ≈ 1 , 2006, astro-ph/0601628.

[36]  J. Bullock,et al.  A Chandra View of Dark Matter in Early-Type Galaxies , 2006, astro-ph/0601301.

[37]  A. Bolton,et al.  The Sloan Lens ACS Survey. II. Stellar Populations and Internal Structure of Early-Type Lens Galaxies , 2005, astro-ph/0512044.

[38]  UCLA,et al.  The Sloan Lens ACS Survey. I. A Large Spectroscopically Selected Sample of Massive Early-Type Lens Galaxies , 2005, astro-ph/0511453.

[39]  Y. Fukazawa,et al.  Scaling Mass Profiles around Elliptical Galaxies Observed with Chandra and XMM-Newton , 2005, astro-ph/0509521.

[40]  R. Davies,et al.  The SAURON project - IV. The mass-to-light ratio, the virial mass estimator and the Fundamental Plane of elliptical and lenticular galaxies , 2005, astro-ph/0505042.

[41]  G. Efstathiou,et al.  Formation of Early-Type Galaxies from Cosmological Initial Conditions , 2005, astro-ph/0512235.

[42]  C. Kochanek,et al.  The Evolution and Structure of Early-Type Field Galaxies: A Combined Statistical Analysis of Gravitational Lenses , 2004, astro-ph/0412001.

[43]  C. Maraston Evolutionary population synthesis: models, analysis of the ingredients and application to high‐z galaxies , 2004, astro-ph/0410207.

[44]  S. Tremaine,et al.  Galactic Dynamics , 2005 .

[45]  T. Treu,et al.  Massive Dark Matter Halos and Evolution of Early-Type Galaxies to z ≈ 1 , 2004, astro-ph/0401373.

[46]  J. Brinkmann,et al.  Stellar and dynamical masses of ellipticals in the Sloan Digital Sky Survey , 2003, astro-ph/0307082.

[47]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[48]  E. Bell,et al.  The Tilt of the Fundamental Plane: Three-Quarters Structural Nonhomology, One-Quarter Stellar Population , 2003, astro-ph/0311383.

[49]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[50]  K. Kuijken,et al.  A Dearth of Dark Matter in Ordinary Elliptical Galaxies , 2003, Science.

[51]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[52]  P. Côté,et al.  Dynamics of the Globular Cluster System Associated with M49 (NGC 4472): Cluster Orbital Properties and the Distribution of Dark Matter , 2003, astro-ph/0303229.

[53]  S. Warren,et al.  Semilinear Gravitational Lens Inversion , 2003, astro-ph/0302587.

[54]  G. Mamon,et al.  Dark matter distribution in the Coma cluster from galaxy kinematics: breaking the mass-anisotropy degeneracy , 2003, astro-ph/0302461.

[55]  P. Salucci,et al.  The fundamental plane of ellipticals: I. The dark matter connection , 2002, astro-ph/0208268.

[56]  T. Treu,et al.  The internal structure of the lens PG1115+080: breaking degeneracies in the value of the Hubble constant , 2002, astro-ph/0210002.

[57]  T. Treu,et al.  The Structure and Dynamics of Luminous and Dark Matter in the Early-Type Lens Galaxy of 0047–281 at z = 0.485 , 2002, astro-ph/0205281.

[58]  O. Wucknitz Degeneracies and scaling relations in general power-law models for gravitational lenses , 2002, astro-ph/0202376.

[59]  T. Treu,et al.  The Internal Structure and Formation of Early-Type Galaxies: The Gravitational Lens System MG 2016+112 at z = 1.004 , 2002, astro-ph/0202342.

[60]  Astronomy,et al.  The Stellar Velocity Dispersion of the Lens Galaxy in MG 2016+112 at z = 1.004 , 2002, astro-ph/0201017.

[61]  E. Verolme,et al.  Two-integral Schwarzschild models , 2001, astro-ph/0112185.

[62]  T. Treu,et al.  The Evolution of Field Early-Type Galaxies to z ∼ 0.7 , 2001, astro-ph/0111504.

[63]  R. Bender,et al.  Dynamical Family Properties and Dark Halo Scaling Relations of Giant Elliptical Galaxies , 2000, astro-ph/0012381.

[64]  R. Bender,et al.  Orbital structure and mass distribution in elliptical galaxies , 2000 .

[65]  David J. C. MacKay,et al.  Comparison of Approximate Methods for Handling Hyperparameters , 1999, Neural Computation.

[66]  P. T. de Zeeuw,et al.  Axisymmetric Three-Integral Models for Galaxies , 1999, astro-ph/9902034.

[67]  M. Loewenstein,et al.  Prevalence and Properties of Dark Matter in Elliptical Galaxies , 1999, astro-ph/9901242.

[68]  K. Makishima,et al.  Greatly Extended X-Ray Emission around the Elliptical Galaxy NGC 4636 Observed with ASCA , 1998, astro-ph/9803287.

[69]  M. Fukugita,et al.  The Cosmic Baryon Budget , 1997, astro-ph/9712020.

[70]  P. T. de Zeeuw,et al.  Dynamical Modeling of Velocity Profiles: The Dark Halo around the Elliptical Galaxy NGC 2434 , 1997, astro-ph/9702126.

[71]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[72]  S. White,et al.  The Structure of cold dark matter halos , 1995, astro-ph/9508025.

[73]  Harland W. Epps,et al.  THE KECK LOW-RESOLUTION IMAGING SPECTROMETER , 1995 .

[74]  M. Franx,et al.  Evidence for axisymmetric halos: The case of IC 2006 , 1994 .

[75]  Ortwin Gerhard,et al.  Line-of-sight velocity profiles in spherical galaxies: breaking the degeneracy between anisotropy and mass , 1993 .

[76]  M. Franx,et al.  A new method for the identification of non-Gaussian line profiles in elliptical galaxies , 1993 .

[77]  R. Saglia,et al.  Elliptical galaxies with dark matter. II : Optimal luminous-dark matter decomposition for a sample of bright objects , 1992 .

[78]  C. Kochanek The implications of lenses for galaxy structure , 1991 .

[79]  I. Shapiro,et al.  On model-dependent bounds on H(0) from gravitational images Application of Q0957 + 561A,B , 1985 .

[80]  J. Gott,et al.  The Statistics of gravitational lenses: The Distributions of image angular separations and lens redshifts , 1984 .

[81]  M. Schwarzschild,et al.  A numerical model for a triaxial stellar system in dynamical equilibrium , 1979 .

[82]  Subrahmanyan Chandrasekhar,et al.  Ellipsoidal Figures of Equilibrium , 1969 .

[83]  E. Salpeter The Luminosity function and stellar evolution , 1955 .