A novel method for improving the performance of thermoacoustic electric generator without resonator

Abstract A thermoacoustic electric generator without resonator designed for aerospace application is discussed in this study, which is developed by a traveling-wave looped-tube thermoacoustic heat engine coupling with two linear alternators directly. A novel method of filling phase modulation object in the acoustic power output port is proposed to improve the performance of the thermoacoustic electric generator. The experimental results show that the ellipsoid makes the most significant influence among sphere, cylinder and ellipsoid serving as phase modulation object. Varying the major axis of the ellipsoid only, the influence of it increases first and then decreases. The ellipsoid fixed in different positions makes different effects. The maximum output electric power of 73.31 W and the maximum system efficiency of 14.12% are obtained in the upper and middle positions respectively.

[1]  Bo Wang,et al.  Study on energy flows in thermoacoustic engines utilizing two-temperature heat sources , 2011 .

[2]  Ercang Luo,et al.  Investigation on a 1kW traveling-wave thermoacoustic electrical generator , 2014 .

[3]  Artur J. Jaworski,et al.  Impact of acoustic impedance and flow resistance on the power output capacity of the regenerators in travelling-wave thermoacoustic engines , 2010 .

[4]  Philippe Nika,et al.  Exergetic optimization of a thermoacoustic engine using the particle swarm optimization method , 2012 .

[5]  G. Swift,et al.  A thermoacoustic-Stirling heat engine: detailed study , 2000, The Journal of the Acoustical Society of America.

[6]  Xuhan Zhang,et al.  A traveling-wave thermoacoustic electric generator with a variable electric R-C load , 2013 .

[7]  Peter H. Ceperley,et al.  A pistonless Stirling engine—The traveling wave heat engine , 1979 .

[8]  Dan Zhao,et al.  Waste thermal energy harvesting from a convection-driven Rijke–Zhao thermo-acoustic-piezo system , 2013 .

[9]  Ercang Luo,et al.  Study on a basic unit of a double-acting thermoacoustic heat engine used for dish solar power , 2014 .

[10]  Zhanghua Wu,et al.  A solar-powered traveling-wave thermoacoustic electricity generator , 2012 .

[11]  Laura Schaefer,et al.  Effect of regenerator positioning on thermoacoustic effect in a looped tube traveling wave thermoacoustic engine , 2015 .

[12]  Yicai Liu,et al.  Coincident effect characteristic in a thermoacoustic regenerator , 2011 .

[13]  Scott Backhaus,et al.  Traveling-wave thermoacoustic electric generator , 2004 .

[14]  W. P. Arnott,et al.  Thermoacoustic engines , 1991, IEEE 1991 Ultrasonics Symposium,.

[15]  Scott Backhaus,et al.  Travelling-wave thermoacoustic electricity generator using an ultra-compliant alternator for utilization of low-grade thermal energy , 2012 .

[16]  Peter H. Ceperley,et al.  Gain and efficiency of a short traveling wave heat engine , 1984 .

[17]  Sandy To,et al.  Numerical and experimental analysis of heat transfer in turbulent flow channels with two-dimensional ribs , 2015 .

[18]  Ercang Luo,et al.  A 100 W-class traveling-wave thermoacoustic electricity generator , 2008 .

[19]  S. Spoelstra,et al.  A high performance thermoacoustic engine , 2011 .

[20]  Scott Backhaus,et al.  A low-cost electricity generator for rural areas using a travelling-wave looped-tube thermoacoustic engine , 2010 .

[21]  Gregory W. Swift,et al.  Analysis and performance of a large thermoacoustic engine , 1992 .

[22]  Masayuki Horio,et al.  Potential of the ‘Renewable Energy Exodus’ (a mass rural remigration) for massive GHG reduction in Japan , 2015 .

[23]  Jeffrey H. Lang,et al.  A linearly-acting variable-reluctance generator for thermoacoustic engines , 2015 .

[24]  Gershon Grossman,et al.  Effect of variable mechanical resistance on electrodynamic alternator efficiency , 2014 .

[25]  Ercang Luo,et al.  Experimental investigation of a 500 W traveling-wave thermoacoustic electricity generator , 2011 .

[26]  Shijie Zhang,et al.  Numerical investigation on a thermoacoustic heat engine unit with a displacer , 2014 .

[27]  C. Y. Liu,et al.  An Experimental Study of Heat Transfer of a Porous Channel Subjected to Oscillating Flow , 2001 .

[28]  Qiang Li,et al.  Evaluation of thermal efficiency and energy conversion of thermoacoustic Stirling engines , 2010 .

[29]  Huifang Kang,et al.  A two-stage traveling-wave thermoacoustic electric generator with loudspeakers as alternators , 2015 .

[30]  Ercang Luo,et al.  Development of a 3 kW double-acting thermoacoustic Stirling electric generator , 2014 .

[31]  S. Spoelstra,et al.  Study of a coaxial thermoacoustic-Stirling cooler , 2008 .

[32]  Xiaoqing Zhang,et al.  Onset and steady-operation features of low temperature differential multi-stage travelling wave thermoacoustic engines for low grade energy utilization , 2015 .

[33]  Jie Zhang,et al.  Operating characteristics and performance improvements of a 500 W traveling-wave thermoacoustic electric generator☆ , 2015 .