Attenuation in trabecular bone: A comparison between numerical simulation and experimental results in human femur.

Numerical simulations (finite-difference time domain) are compared to experimental results of ultrasound wave propagation through human trabecular bones. Three-dimensional high-resolution microcomputed tomography reconstructions served as input geometry for the simulation. The numerical simulation took into account scattering, but not absorption. Simulated and experimental values of the attenuation coefficients (alpha, dB/cm) and the normalized broadband ultrasound attenuation (nBUA, dB/cm/MHz) were measured and compared on a set of 28 samples. While experimental and simulated nBUA values were highly correlated (R(2)=0.83), and showed a similar dependence with bone volume fraction, the simulation correctly predicted experimental nBUA values only for low bone volume fraction (BV/TV). Attenuation coefficients were underestimated by the simulation. The absolute difference between experimental and simulated alpha values increased with both BV/TV and frequency. As a function of frequency, the relative difference between experimental and simulated alpha values decreased from 60% around 400 kHz to 30% around 1.2 MHz. Under the assumption that the observed discrepancy expresses the effect of the absorption, our results suggests that nBUA and its dependence on BV/TV can be mostly explained by scattering, and that the relative contribution of scattering to alpha increases with frequency, becoming predominant (>50 %) over absorption for frequencies above 600 kHz.

[1]  E. Bossy,et al.  Three-dimensional simulation of ultrasound propagation through trabecular bone structures measured by synchrotron microtomography , 2005, Physics in medicine and biology.

[2]  F. Peyrin,et al.  Prediction of backscatter coefficient in trabecular bones using a numerical model of three-dimensional microstructure. , 2003, The Journal of the Acoustical Society of America.

[3]  B Bianco,et al.  Computational methods for ultrasonic bone assessment. , 1999, Ultrasound in medicine & biology.

[4]  V Bousson,et al.  In vitro ultrasonic characterization of human cancellous femoral bone using transmission and backscatter measurements: relationships to bone mineral density. , 2006, The Journal of the Acoustical Society of America.

[5]  P. Laugier,et al.  In vitro measurement of the frequency-dependent attenuation in cancellous bone between 0.2 and 2 MHz. , 2000, The Journal of the Acoustical Society of America.

[6]  R. Lakes,et al.  Ultrasonic wave propagation and attenuation in wet bone. , 1986, Journal of biomedical engineering.

[7]  Maryline Talmant,et al.  Three-dimensional simulations of ultrasonic axial transmission velocity measurement on cortical bone models. , 2004, The Journal of the Acoustical Society of America.

[8]  Françoise Peyrin,et al.  Variation of Ultrasonic Parameters With Microstructure and Material Properties of Trabecular Bone: A 3D Model Simulation , 2007, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[9]  A. Stewart,et al.  Long‐Term Fracture Prediction by DXA and QUS: A 10‐Year Prospective Study , 2005, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[10]  Suk Wang Yoon,et al.  Acoustic wave propagation in bovine cancellous bone: application of the Modified Biot-Attenborough model. , 2003, The Journal of the Acoustical Society of America.

[11]  F Peyrin,et al.  Ultrasonic characterization of human cancellous bone using transmission and backscatter measurements: relationships to density and microstructure. , 2002, Bone.

[12]  P. Laugier,et al.  A method for the estimation of femoral bone mineral density from variables of ultrasound transmission through the human femur. , 2007, Bone.

[13]  W. Lauriks,et al.  Ultrasonic wave propagation in human cancellous bone: application of Biot theory. , 2004, The Journal of the Acoustical Society of America.

[14]  A Hosokawa Ultrasonic pulse waves in cancellous bone analyzed by finite-difference time-domain methods. , 2006, Ultrasonics.

[15]  P Cloetens,et al.  A synchrotron radiation microtomography system for the analysis of trabecular bone samples. , 1999, Medical physics.

[16]  C. Tsogka,et al.  Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media , 2001 .

[17]  A Hosokawa Simulation of ultrasound propagation through bovine cancellous bone using elastic and Biot's finite-difference time-domain methods. , 2005, The Journal of the Acoustical Society of America.

[18]  Robert Luben,et al.  Prediction of total and hip fracture risk in men and women by quantitative ultrasound of the calcaneus: EPIC-Norfolk prospective population study , 2004, The Lancet.

[19]  G Berger,et al.  In vitro assessment of the relationship between acoustic properties and bone mass density of the calcaneus by comparison of ultrasound parametric imaging and quantitative computed tomography. , 1997, Bone.

[20]  Reinhard Barkmann,et al.  Association of Five Quantitative Ultrasound Devices and Bone Densitometry With Osteoporotic Vertebral Fractures in a Population‐Based Sample: The OPUS Study , 2004, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[21]  P R White,et al.  Ultrasonic propagation in cancellous bone: a new stratified model. , 1999, Ultrasound in medicine & biology.

[22]  N. Sasaki,et al.  Stress relaxation function of bone and bone collagen. , 1993, Journal of biomechanics.

[23]  K. Wear Frequency dependence of ultrasonic backscatter from human trabecular bone: theory and experiment. , 1999, The Journal of the Acoustical Society of America.

[24]  A. Díez-Pérez,et al.  Relationship Between Bone Quantitative Ultrasound and Fractures: A Meta‐Analysis , 2006, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.